1-2hit |
Zhiqiang YOU Tsuyoshi IWAGAKI Michiko INOUE Hideo FUJIWARA
This paper proposes a low power scan test scheme and formulates a problem based on this scheme. In this scheme the flip-flops are grouped into N scan chains. At any time, only one scan chain is active during scan test. Therefore, both average power and peak power are reduced compared with conventional full scan test methodology. This paper also proposes a tabu search-based approach to minimize test application time. In this approach we handle the information during deterministic test efficiently. Experimental results demonstrate that this approach drastically reduces both average power and peak power dissipation at a little longer test application time on various benchmark circuits.
Zhiqiang YOU Ken'ichi YAMAGUCHI Michiko INOUE Jacob SAVIR Hideo FUJIWARA
This paper proposes two power-constrained test synthesis schemes and scheduling algorithms, under non-scan BIST, for RTL data paths. The first scheme uses boundary non-scan BIST, and can achieve low hardware overheads. The second scheme uses generic non-scan BIST, and can offer some tradeoffs between hardware overhead, test application time and power dissipation. A designer can easily select an appropriate design parameter based on the desired tradeoff. Experimental results confirm the good performance and practicality of our new approaches.