Keyword Search Result

[Keyword] malware analysis(6hit)

1-6hit
  • A Cross-Platform Study on Emerging Malicious Programs Targeting IoT Devices Open Access

    Tao BAN  Ryoichi ISAWA  Shin-Ying HUANG  Katsunari YOSHIOKA  Daisuke INOUE  

     
    LETTER-Cybersecurity

      Pubricized:
    2019/06/21
      Vol:
    E102-D No:9
      Page(s):
    1683-1685

    Along with the proliferation of IoT (Internet of Things) devices, cyberattacks towards them are on the rise. In this paper, aiming at efficient precaution and mitigation of emerging IoT cyberthreats, we present a multimodal study on applying machine learning methods to characterize malicious programs which target multiple IoT platforms. Experiments show that opcode sequences obtained from static analysis and API sequences obtained by dynamic analysis provide sufficient discriminant information such that IoT malware can be classified with near optimal accuracy. Automated and accelerated identification and mitigation of new IoT cyberthreats can be enabled based on the findings reported in this study.

  • BareUnpack: Generic Unpacking on the Bare-Metal Operating System

    Binlin CHENG  Pengwei LI  

     
    PAPER-Information Network

      Pubricized:
    2018/09/12
      Vol:
    E101-D No:12
      Page(s):
    3083-3091

    Malware has become a growing threat as malware writers have learned that signature-based detectors can be easily evaded by packing the malware. Packing is a major challenge to malware analysis. The generic unpacking approach is the major solution to the threat of packed malware, and it is based on the intrinsic nature of the execution of packed executables. That is, the original code should be extracted in memory and get executed at run-time. The existing generic unpacking approaches need a simulated environment to monitor the executing of the packed executables. Unfortunately, the simulated environment is easily detected by the environment-sensitive packers. It makes the existing generic unpacking approaches easily evaded by the packer. In this paper, we propose a novel unpacking approach, BareUnpack, to monitor the execution of the packed executables on the bare-metal operating system, and then extracts the hidden code of the executable. BareUnpack does not need any simulated environment (debugger, emulator or VM), and it works on the bare-metal operating system directly. Our experimental results show that BareUnpack can resist the environment-sensitive packers, and improve the unpacking effectiveness, which outperforms other existing unpacking approaches.

  • Automatically Generating Malware Analysis Reports Using Sandbox Logs

    Bo SUN  Akinori FUJINO  Tatsuya MORI  Tao BAN  Takeshi TAKAHASHI  Daisuke INOUE  

     
    PAPER-Network Security

      Pubricized:
    2018/08/22
      Vol:
    E101-D No:11
      Page(s):
    2622-2632

    Analyzing a malware sample requires much more time and cost than creating it. To understand the behavior of a given malware sample, security analysts often make use of API call logs collected by the dynamic malware analysis tools such as a sandbox. As the amount of the log generated for a malware sample could become tremendously large, inspecting the log requires a time-consuming effort. Meanwhile, antivirus vendors usually publish malware analysis reports (vendor reports) on their websites. These malware analysis reports are the results of careful analysis done by security experts. The problem is that even though there are such analyzed examples for malware samples, associating the vendor reports with the sandbox logs is difficult. This makes security analysts not able to retrieve useful information described in vendor reports. To address this issue, we developed a system called AMAR-Generator that aims to automate the generation of malware analysis reports based on sandbox logs by making use of existing vendor reports. Aiming at a convenient assistant tool for security analysts, our system employs techniques including template matching, API behavior mapping, and malicious behavior database to produce concise human-readable reports that describe the malicious behaviors of malware programs. Through the performance evaluation, we first demonstrate that AMAR-Generator can generate human-readable reports that can be used by a security analyst as the first step of the malware analysis. We also demonstrate that AMAR-Generator can identify the malicious behaviors that are conducted by malware from the sandbox logs; the detection rates are up to 96.74%, 100%, and 74.87% on the sandbox logs collected in 2013, 2014, and 2015, respectively. We also present that it can detect malicious behaviors from unknown types of sandbox logs.

  • An Accurate Packer Identification Method Using Support Vector Machine

    Ryoichi ISAWA  Tao BAN  Shanqing GUO  Daisuke INOUE  Koji NAKAO  

     
    PAPER-Foundations

      Vol:
    E97-A No:1
      Page(s):
    253-263

    PEiD is a packer identification tool widely used for malware analysis but its accuracy is becoming lower and lower recently. There exist two major reasons for that. The first is that PEiD does not provide a way to create signatures, though it adopts a signature-based approach. We need to create signatures manually, and it is difficult to catch up with packers created or upgraded rapidly. The second is that PEiD utilizes exact matching. If a signature contains any error, PEiD cannot identify the packer that corresponds to the signature. In this paper, we propose a new automated packer identification method to overcome the limitations of PEiD and report the results of our numerical study. Our method applies string-kernel-based support vector machine (SVM): it can measure the similarity between packed programs without our operations such as manually creating signature and it provides some error tolerant mechanism that can significantly reduce detection failure caused by minor signature violations. In addition, we use the byte sequence starting from the entry point of a packed program as a packer's feature given to SVM. That is, our method combines the advantages from signature-based approach and machine learning (ML) based approach. The numerical results on 3902 samples with 26 packer classes and 3 unpacked (not-packed) classes shows that our method achieves a high accuracy of 99.46% outperforming PEiD and an existing ML-based method that Sun et al. have proposed.

  • A Novel Malware Clustering Method Using Frequency of Function Call Traces in Parallel Threads

    Junji NAKAZATO  Jungsuk SONG  Masashi ETO  Daisuke INOUE  Koji NAKAO  

     
    PAPER

      Vol:
    E94-D No:11
      Page(s):
    2150-2158

    With the rapid development and proliferation of the Internet, cyber attacks are increasingly and continually emerging and evolving nowadays. Malware – a generic term for computer viruses, worms, trojan horses, spywares, adwares, and bots – is a particularly lethal security threat. To cope with this security threat appropriately, we need to identify the malwares' tendency/characteristic and analyze the malwares' behaviors including their classification. In the previous works of classification technologies, the malwares have been classified by using data from dynamic analysis or code analysis. However, the works have not been succeeded to obtain efficient classification with high accuracy. In this paper, we propose a new classification method to cluster malware more effectively and more accurately. We firstly perform dynamic analysis to automatically obtain the execution traces of malwares. Then, we classify malwares into some clusters using their characteristics of the behavior that are derived from Windows API calls in parallel threads. We evaluated our classification method using 2,312 malware samples with different hash values. The samples classified into 1,221 groups by the result of three types of antivirus softwares were classified into 93 clusters. 90% of the samples used in the experiment were classified into 20 clusters at most. Moreover, it ensured that 39 malware samples had characteristics different from other samples, suggesting that these may be new types of malware. The kinds of Windows API calls confirmed the samples classified into the same cluster had the same characteristics. We made clear that antivirus softwares named different name to malwares that have same behavior.

  • Practical Correlation Analysis between Scan and Malware Profiles against Zero-Day Attacks Based on Darknet Monitoring

    Koji NAKAO  Daisuke INOUE  Masashi ETO  Katsunari YOSHIOKA  

     
    INVITED PAPER

      Vol:
    E92-D No:5
      Page(s):
    787-798

    Considering rapid increase of recent highly organized and sophisticated malwares, practical solutions for the countermeasures against malwares especially related to zero-day attacks should be effectively developed in an urgent manner. Several research activities have been already carried out focusing on statistic calculation of network events by means of global network sensors (so-called macroscopic approach) as well as on direct malware analysis such as code analysis (so-called microscopic approach). However, in the current research activities, it is not clear at all how to inter-correlate between network behaviors obtained from macroscopic approach and malware behaviors obtained from microscopic approach. In this paper, in one side, network behaviors observed from darknet are strictly analyzed to produce scan profiles, and in the other side, malware behaviors obtained from honeypots are correctly analyzed so as to produce a set of profiles containing malware characteristics. To this end, inter-relationship between above two types of profiles is practically discussed and studied so that frequently observed malwares behaviors can be finally identified in view of scan-malware chain.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.