1-9hit |
Wenhao FAN Dong LIU Fan WU Bihua TANG Yuan'an LIU
Android operating system occupies a high share in the mobile terminal market. It promotes the rapid development of Android applications (apps). However, the emergence of Android malware greatly endangers the security of Android smartphone users. Existing research works have proposed a lot of methods for Android malware detection, but they did not make the utilization of apps' functional category information so that the strong similarity between benign apps in the same functional category is ignored. In this paper, we propose an Android malware detection scheme based on the functional classification. The benign apps in the same functional category are more similar to each other, so we can use less features to detect malware and improve the detection accuracy in the same functional category. The aim of our scheme is to provide an automatic application functional classification method with high accuracy. We design an Android application functional classification method inspired by the hyperlink induced topic search (HITS) algorithm. Using the results of automatic classification, we further design a malware detection method based on app similarity in the same functional category. We use benign apps from the Google Play Store and use malware apps from the Drebin malware set to evaluate our scheme. The experimental results show that our method can effectively improve the accuracy of malware detection.
Yuki KAJIWARA Junjun ZHENG Koichi MOURI
The number of malware, including variants and new types, is dramatically increasing over the years, posing one of the greatest cybersecurity threats nowadays. To counteract such security threats, it is crucial to detect malware accurately and early enough. The recent advances in machine learning technology have brought increasing interest in malware detection. A number of research studies have been conducted in the field. It is well known that malware detection accuracy largely depends on the training dataset used. Creating a suitable training dataset for efficient malware detection is thus crucial. Different works usually use their own dataset; therefore, a dataset is only effective for one detection method, and strictly comparing several methods using a common training dataset is difficult. In this paper, we focus on how to create a training dataset for efficiently detecting malware. To achieve our goal, the first step is to clarify the information that can accurately characterize malware. This paper concentrates on threads, by treating them as important information for characterizing malware. Specifically, on the basis of the dynamic analysis log from the Alkanet, a system call tracer, we obtain the thread information and classify the thread information processing into four patterns. Then the malware detection is performed using the number of transitions of system calls appearing in the thread as a feature. Our comparative experimental results showed that the primary thread information is important and useful for detecting malware with high accuracy.
Minkyoung CHO Jik-Soo KIM Jongho SHIN Incheol SHIN
We propose an effective 2d image based end-to-end deep learning model for malware detection by introducing a black & white embedding to reserve bit information and adapting the convolution architecture. Experimental results show that our proposed scheme can achieve superior performance in both of training and testing data sets compared to well-known image recognition deep learning models (VGG and ResNet).
Vasileios KOULIARIDIS Konstantia BARMPATSALOU Georgios KAMBOURAKIS Shuhong CHEN
Modern mobile devices are equipped with a variety of tools and services, and handle increasing amounts of sensitive information. In the same trend, the number of vulnerabilities exploiting mobile devices are also augmented on a daily basis and, undoubtedly, popular mobile platforms, such as Android and iOS, represent an alluring target for malware writers. While researchers strive to find alternative detection approaches to fight against mobile malware, recent reports exhibit an alarming increase in mobile malware exploiting victims to create revenues, climbing towards a billion-dollar industry. Current approaches to mobile malware analysis and detection cannot always keep up with future malware sophistication [2],[4]. The aim of this work is to provide a structured and comprehensive overview of the latest research on mobile malware detection techniques and pinpoint their benefits and limitations.
Kyohei OSUGE Hiroya KATO Shuichiro HARUTA Iwao SASASE
Android malwares are rapidly becoming a potential threat to users. Among several Android malware detection schemes, the scheme using Inter-Component Communication (ICC) is gathering attention. That scheme extracts numerous ICC-related features to detect malwares by machine learning. In order to mitigate the degradation of detection performance caused by redundant features, Correlation-based Feature Selection (CFS) is applied to feature before machine learning. CFS selects useful features for detection in accordance with the theory that a good feature subset has little correlation with mutual features. However, CFS may remove useful ICC-related features because of strong correlation between them. In this paper, we propose an effective feature selection scheme for Android ICC-based malware detection using the gap of the appearance ratio. We argue that the features frequently appearing in either benign apps or malwares are useful for malware detection, even if they are strongly correlated with each other. To select useful features based on our argument, we introduce the proportion of the appearance ratio of a feature between benign apps and malwares. Since the proportion can represent whether a feature frequently appears in either benign apps or malwares, this metric is useful for feature selection based on our argument. Unfortunately, the proportion is ineffective when a feature appears only once in all apps. Thus, we also introduce the difference of the appearance ratio of a feature between benign apps and malwares. Since the difference simply represents the gap of the appearance ratio, we can select useful features by using this metric when such a situation occurs. By computer simulation with real dataset, we demonstrate our scheme improves detection accuracy by selecting the useful features discarded in the previous scheme.
Hyun-Joo KIM Jong-Hyun KIM Jung-Tai KIM Ik-Kyun KIM Tai-Myung CHUNG
The recent cyber-attacks utilize various malware as a means of attacks for the attacker's malicious purposes. They are aimed to steal confidential information or seize control over major facilities after infiltrating the network of a target organization. Attackers generally create new malware or many different types of malware by using an automatic malware creation tool which enables remote control over a target system easily and disturbs trace-back of these attacks. The paper proposes a generation method of malware behavior patterns as well as the detection techniques in order to detect the known and even unknown malware efficiently. The behavior patterns of malware are generated with Multiple Sequence Alignment (MSA) of API call sequences of malware. Consequently, we defined these behavior patterns as a “feature-chain” of malware for the analytical purpose. The initial generation of the feature-chain consists of extracting API call sequences with API hooking library, classifying malware samples by the similar behavior, and making the representative sequences from the MSA results. The detection mechanism of numerous malware is performed by measuring similarity between API call sequence of a target process (suspicious executables) and feature-chain of malware. By comparing with other existing methods, we proved the effectiveness of our proposed method based on Longest Common Subsequence (LCS) algorithm. Also we evaluated that our method outperforms other antivirus systems with 2.55 times in detection rate and 1.33 times in accuracy rate for malware detection.
Takahiro KASAMA Katsunari YOSHIOKA Daisuke INOUE Tsutomu MATSUMOTO
As the number of new malware has increased explosively, traditional malware detection approaches based on pattern matching have been less effective. Therefore, it is important to develop a detection method which relies on not signatures but characteristic behaviors of malware. Recently, malware authors have been embedding functions for countermeasure against malware analyses and detections into malware. Accordingly, modern malware often changes their runtime behaviors in each execution to tolerate against malware analyses and detections. For example, when malware copies itself on a file system, it can randomly determine its file name for avoiding the detections. Another example is that when malware tries to connect its command and control server, it randomly chooses a domain name from a hard-coded domain name list to avoid being blocked by a static blacklist of malicious domain names. We assume that such evasive behaviors are unnecessary for benign software. Therefore the behaviors can be the clues to distinguish malware from benign software. In this paper, we propose a novel behavior-based malware detection method which focuses attention on such characteristics. Our proposed method conducts dynamic analysis on an executable file multiple times in same sandbox environment so as to obtain plural lists of API call sequences and plural traffic logs, and then compares the lists and the logs to find the difference between the multiple executions. In the experiments with 5,697 malware samples and 819 benign software samples, we can detect about 70% malware samples and the false positive rate is about 1%. In addition, we can detect about 50% malware samples which were not detected by each Anti-Virus Software engine. Therefore we confirm the possibility the proposed method may be able to improve the accuracy of malware detection utilizing in combination with other existing methods.
YoungHan CHOI HyoungChun KIM DongHoon LEE
The growing use of web services is increasing web browser attacks exponentially. Most attacks use a technique called heap spraying because of its high success rate. Heap spraying executes a malicious code without indicating the exact address of the code by copying it into many heap objects. For this reason, the attack has a high potential to succeed if only the vulnerability is exploited. Thus, attackers have recently begun using this technique because it is easy to use JavaScript to allocate the heap memory area. This paper proposes a novel technique that detects heap spraying attacks by executing a heap object in a real environment, irrespective of the version and patch status of the web browser. This runtime execution is used to detect various forms of heap spraying attacks, such as encoding and polymorphism. Heap objects are executed after being filtered on the basis of patterns of heap spraying attacks in order to reduce the overhead of the runtime execution. Patterns of heap spraying attacks are based on analysis of how an web browser accesses benign web sites. The heap objects are executed forcibly by changing the instruction register into the address of them after being loaded into memory. Thus, we can execute the malicious code without having to consider the version and patch status of the browser. An object is considered to contain a malicious code if the execution reaches a call instruction and then the instruction accesses the API of system libraries, such as kernel32.dll and ws_32.dll. To change registers and monitor execution flow, we used a debugger engine. A prototype, named HERAD(HEap spRAying Detector), is implemented and evaluated. In experiments, HERAD detects various forms of exploit code that an emulation cannot detect, and some heap spraying attacks that NOZZLE cannot detect. Although it has an execution overhead, HERAD produces a low number of false alarms. The processing time of several minutes is negligible because our research focuses on detecting heap spraying. This research can be applied to existing systems that collect malicious codes, such as Honeypot.
Ikkyun KIM Koohong KANG Yangseo CHOI Daewon KIM Jintae OH Jongsoo JANG Kijun HAN
The ability to recognize quickly inside network flows to be executable is prerequisite for malware detection. For this purpose, we introduce an instruction transition probability matrix (ITPX) which is comprised of the IA-32 instruction sets and reveals the characteristics of executable code's instruction transition patterns. And then, we propose a simple algorithm to detect executable code inside network flows using a reference ITPX which is learned from the known Windows Portable Executable files. We have tested the algorithm with more than thousands of executable and non-executable codes. The results show that it is very promising enough to use in real world.