Keyword Search Result

[Keyword] negative group delay(4hit)

1-4hit
  • Embedded F-SIR Type Transmission Line with Open-Stub for Negative Group Delay Characteristic

    Yoshiki KAYANO  Hiroshi INOUE  

     
    BRIEF PAPER

      Vol:
    E99-C No:9
      Page(s):
    1023-1026

    Negative group delay characteristics can be used to improve signal-integrity performance such as equalizer for compensation of the group delay of transmission line (TL). This brief-paper newly attempts to propose a concept of the embedded Folded-Stepped Impedance Resonator (F-SIR) structure with open-stub resonator, for negative group delay and slope characteristics at high-frequency as well as low-insertion loss. The concept of the proposed TL is based on the combination of resonance and anti-resonance due to open-stub resonator in order to establish wideband negative group delay and negative slope characteristics. The proposed TL is fabricated on PCB, and then the concept is validated by measurement and simulation.

  • UWB Active Balun Design with Small Group Delay Variation and Improved Return Loss

    Kyoung-Pyo AHN  Ryo ISHIKAWA  Kazuhiko HONJO  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Vol:
    E94-C No:5
      Page(s):
    905-908

    Different from distributed baluns, active baluns have group delay variations in the lower bands related to inherent internal capacitances and resistance in transistors. A negative group delay (NGD) circuit is employed as a compensator of group delay variation for an ultra-wideband (UWB) active balun. First, three-cell NGD circuit is inserted into a simple active balun circuit for realizing both group delay compensation and return loss improvement. The simulated results show a group delay variation of 4.8 ps and an input return loss of above 11.5 dB in the UWB band (3.1-10.6 GHz). Then, a pair of one-cell NGD circuits is added to reduce the remaining group delay variation (3.4 ps in simulation). The circuit with the NGD circuits was fabricated on an InGaP/GaAs HBT MMIC substrate. The measured results achieved a group delay variation of 7.7 ps, a gain variation of 0.5 dB, an input return loss of greater than 10 dB, and an output return loss of larger than 8.1 dB in the UWB band.

  • Left Hand Mode Transmission Line Characteristics Made by F-SIR Structure on PCB

    Ryosuke YANAGISAWA  Yoshiki KAYANO  Hiroshi INOUE  

     
    LETTER

      Vol:
    E93-B No:7
      Page(s):
    1855-1857

    Basic left hand mode transmission line (LH mode TL) characteristics made on PCB is an important future issue for the application of the EMC field. In this paper, possibility of a LH mode TL characteristic made by a folded-stepped impedance resonator (F-SIR) type is investigated experimentally and numerically. The experimental and calculated from FEM and equivalent circuit results indicate that some backward propagation characteristic and negative group delay can be established by F-SIR structure.

  • Synthesis for Negative Group Delay Circuits Using Distributed and Second-Order RC Circuit Configurations

    Kyoung-Pyo AHN  Ryo ISHIKAWA  Akira SAITOU  Kazuhiko HONJO  

     
    PAPER

      Vol:
    E92-C No:9
      Page(s):
    1176-1181

    This paper describes the characteristic of negative group delay (NGD) circuits for various configurations including first-order, distributed, and second-order RC circuit configurations. This study includes locus, magnitude, and phase characteristics of the NGD circuits. The simplest NGD circuit is available using first-order RC or RL configuration. As an example of distributed circuit configuration, it is verified that losses in a distributed line causes NGD characteristic at higher cut-off band of a coupled four-line bandpass filter. Also, novel wideband NGD circuits using second-order RC configuration, instead of conventional RLC configuration, are proposed. Adding a parallel resistor to a parallel-T filter enables NGD characteristic to it. Also, a Wien-Robinson bridge is modified to have NGD characteristic by controlling the voltage division ratio. They are fabricated on MMIC substrate, and their NGD characteristics are verified with measured results. They have larger insertion loss than multi-stage RLC NGD circuits, however they can realize second-order NGD characteristic without practical implementation of inductors.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.