1-4hit |
Hiroshi SHIMANUKI Toyohide WATANABE Koichi ASAKURA Hideki SATO Taketoshi USHIAMA
When people learn a handicraft with instructional contents such as books, videos, and web pages, many of them often give up halfway because the contents do not always assure how to make it. This study aims to provide origami learners, especially beginners, with feedbacks on their folding operations. An approach for recognizing the state of the learner by using a single top-view camera, and pointing out the mistakes made during the origami folding operation is proposed. First, an instruction model that stores easy-to-follow folding operations is defined. Second, a method for recognizing the state of the learner's origami paper sheet is proposed. Third, a method for detecting mistakes made by the learner by means of anomaly detection using a one-class support vector machine (one-class SVM) classifier (using the folding progress and the difference between the learner's origami shape and the correct shape) is proposed. Because noises exist in the camera images due to shadows and occlusions caused by the learner's hands, the shapes of the origami sheet are not always extracted accurately. To train the one-class SVM classifier with high accuracy, a data cleansing method that automatically sifts out video frames with noises is proposed. Moreover, using the statistics of features extracted from the frames in a sliding window makes it possible to reduce the influence by the noises. The proposed method was experimentally demonstrated to be sufficiently accurate and robust against noises, and its false alarm rate (false positive rate) can be reduced to zero. Requiring only a single camera and common origami paper, the proposed method makes it possible to monitor mistakes made by origami learners and support their self-learning.
Xuefeng BAI Tiejun ZHANG Chuanjun WANG Ahmed A. ABD EL-LATIF Xiamu NIU
Player detection is an important part in sports video analysis. Over the past few years, several learning based detection methods using various supervised two-class techniques have been presented. Although satisfactory results can be obtained, a lot of manual labor is needed to construct the training set. To overcome this drawback, this letter proposes a player detection method based on one-class SVM (OCSVM) using automatically generated training data. The proposed method is evaluated using several video clips captured from World Cup 2010, and experimental results show that our approach achieves a high detection rate while keeping the training set construction's cost low.
Chang LIU Guijin WANG Wenxin NING Xinggang LIN
A novel approach for detecting anomaly in visual surveillance system is proposed in this paper. It is composed of three parts: (a) a dense motion field and motion statistics method, (b) motion directional PCA for feature dimensionality reduction, (c) an improved one-class SVM for one-class classification. Experiments demonstrate the effectiveness of the proposed algorithm in detecting abnormal events in surveillance video, while keeping a low false alarm rate. Our scheme works well in complicated situations that common tracking or detection modules cannot handle.
Jungsuk SONG Hiroki TAKAKURA Yasuo OKABE Yongjin KWON
Intrusion detection system (IDS) has played an important role as a device to defend our networks from cyber attacks. However, since it is unable to detect unknown attacks, i.e., 0-day attacks, the ultimate challenge in intrusion detection field is how we can exactly identify such an attack by an automated manner. Over the past few years, several studies on solving these problems have been made on anomaly detection using unsupervised learning techniques such as clustering, one-class support vector machine (SVM), etc. Although they enable one to construct intrusion detection models at low cost and effort, and have capability to detect unforeseen attacks, they still have mainly two problems in intrusion detection: a low detection rate and a high false positive rate. In this paper, we propose a new anomaly detection method based on clustering and multiple one-class SVM in order to improve the detection rate while maintaining a low false positive rate. We evaluated our method using KDD Cup 1999 data set. Evaluation results show that our approach outperforms the existing algorithms reported in the literature; especially in detection of unknown attacks.