Keyword Search Result

[Keyword] pedestrian classification(2hit)

1-2hit
  • Locally Important Pattern Clustering Code for Pedestrian Classification

    Young Chul LIM  Minsung KANG  

     
    LETTER-Vision

      Vol:
    E98-A No:8
      Page(s):
    1875-1878

    In this letter, a local pattern coding scheme is proposed to reduce the dimensionality of feature vectors in the local ternary pattern. The proposed method encodes the ternary patterns into a binary pattern by clustering similar ternary patterns. The experimental results show that the proposed method outperforms the previous methods.

  • Accurate and Real-Time Pedestrian Classification Based on UWB Doppler Radar Images and Their Radial Velocity Features

    Kenshi SAHO  Takuya SAKAMOTO  Toru SATO  Kenichi INOUE  Takeshi FUKUDA  

     
    PAPER-Sensing

      Vol:
    E96-B No:10
      Page(s):
    2563-2572

    The classification of human motion is an important aspect of monitoring pedestrian traffic. This requires the development of advanced surveillance and monitoring systems. Methods to achieve this have been proposed using micro-Doppler radars. However, reliable long-term data and/or complicated procedures are needed to classify motion accurately with these conventional methods because their accuracy and real-time capabilities are invariably inadequate. This paper proposes an accurate and real-time method for classifying the movements of pedestrians using ultra wide-band (UWB) Doppler radar to overcome these problems. The classification of various movements is achieved by extracting feature parameters based on UWB Doppler radar images and their radial velocity distributions. Experiments were carried out assuming six types of pedestrian movements (pedestrians swinging both arms, swinging only one arm, swinging no arms, on crutches, pushing wheelchairs, and seated in wheelchairs). We found they could be classified using the proposed feature parameters and a k-nearest neighbor algorithm. A classification accuracy of 96% was achieved with a mean calculation time of 0.55s. Moreover, the classification accuracy was 99% using our proposed method for classifying three groups of pedestrian movements (normal walkers, those on crutches, and those in wheelchairs).

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.