1-3hit |
Bin YANG Yuliang LU Kailong ZHU Guozheng YANG Jingwei LIU Haibo YIN
The rapid development of information techniques has lead to more and more high-dimensional datasets, making classification more difficult. However, not all of the features are useful for classification, and some of these features may even cause low classification accuracy. Feature selection is a useful technique, which aims to reduce the dimensionality of datasets, for solving classification problems. In this paper, we propose a modified bat algorithm (BA) for feature selection, called MBAFS, using a SVM. Some mechanisms are designed for avoiding the premature convergence. On the one hand, in order to maintain the diversity of bats, they are guided by the combination of a random bat and the global best bat. On the other hand, to enhance the ability of escaping from local optimization, MBAFS employs one mutation mechanism while the algorithm trapped into local optima. Furthermore, the performance of MBAFS was tested on twelve benchmark datasets, and was compared with other BA based algorithms and some well-known BPSO based algorithms. Experimental results indicated that the proposed algorithm outperforms than other methods. Also, the comparison details showed that MBAFS is competitive in terms of computational time.
Amir MEHRAFSA Alireza SOKHANDAN Ghader KARIMIAN
In this paper, a new algorithm called TGA is introduced which defines the concept of time more naturally for the first time. A parameter called TimeToLive is considered for each chromosome, which is a time duration in which it could participate in the process of the algorithm. This will lead to keeping the dynamism of algorithm in addition to maintaining its convergence sufficiently and stably. Thus, the TGA guarantees not to result in premature convergence or stagnation providing necessary convergence to achieve optimal answer. Moreover, the mutation operator is used more meaningfully in the TGA. Mutation probability has direct relation with parent similarity. This kind of mutation will decrease ineffective mating percent which does not make any improvement in offspring individuals and also it is more natural. Simulation results show that one run of the TGA is enough to reach the optimum answer and the TGA outperforms the standard genetic algorithm.
In order to maintain the diversity of structures in the population and prevent premature convergence, I have developed a new genetic algorithm called DCGA. In the experiments on many standard benchmark problems, DCGA showed good performances, whereas with harder problems, in some cases, the phenomena were observed that the search was stagnated at a local optimum despite that the diversity of the population is maintained. In this paper, I propose methods for escaping such phenomena and improving the performance by reinitializing the population, that is, a method called each-structure-based reinitializing method with a deterministic structure diverging procedure as a method for producing new structures and an adaptive improvement probability bound as a search termination criterion. The results of experiments demonstrate that DCGA becomes robust in harder problems by employing these proposed methods.