1-2hit |
In our previous work, we proposed to combine ConceptNet and WordNet for Word Sense Disambiguation (WSD). The ConceptNet was automatically disambiguated through Normalized Google Distance (NGD) similarity. In this letter, we present several techniques to enhance the performance of the ConceptNet disambiguation and use this enriched semantic knowledge in WSD task. We propose to enrich both the WordNet semantic knowledge and NGD to disambiguate the concepts in ConceptNet. Furthermore, we apply the enriched semantic knowledge to improve the performance of WSD. From a number of experiments, the proposed method has been obtained enhanced results.
Raul Ernesto MENENDEZ-MORA Ryutaro ICHISE
An ability to assess similarity lies close to the core of cognition. Its understanding support the comprehension of human success in tasks like problem solving, categorization, memory retrieval, inductive reasoning, etc, and this is the main reason that it is a common research topic. In this paper, we introduce the idea of semantic differences and commonalities between words to the similarity computation process. Five new semantic similarity metrics are obtained after applying this scheme to traditional WordNet-based measures. We also combine the node based similarity measures with a corpus-independent way of computing the information content. In an experimental evaluation of our approach on two standard word pairs datasets, four of the measures outperformed their classical version, while the other performed as well as their unmodified counterparts.