1-4hit |
Hiroshi FUJIWARA Kei SHIBUSAWA Kouki YAMAMOTO Hiroaki YAMAMOTO
The multislope ski-rental problem is an online optimization problem that generalizes the classical ski-rental problem. The player is offered not only a buy and a rent options but also other options that charge both initial and per-time fees. The competitive ratio of the classical ski-rental problem is known to be 2. In contrast, the best known so far on the competitive ratio of the multislope ski-rental problem is an upper bound of 4 and a lower bound of 3.62. In this paper we consider a parametric version of the multislope ski-rental problem, regarding the number of options as a parameter. We prove an upper bound for the parametric problem which is strictly less than 4. Moreover, we give a simple recurrence relation that yields an equation having a lower bound value as its root.
Hiroshi FUJIWARA Shunsuke SATOU Toshihiro FUJITO
In the 3-slope ski-rental problem, the player is asked to determine a strategy, that is, (i) whether to buy a ski wear and then a ski set separately, or to buy them at once for a discount price, and (ii) when to buy these goods. If the player has not got any thing, he/she can rent it for some price. The objective is to minimize the total cost, under the assumption that the player does not know how many times he/she goes skiing in the future. We reveal that even with a large discount for buying at once available, there is some price setting for which to buy the goods separately is a more reasonable choice. We also show that the performance of the optimal strategy may become arbitrarily worse, when a large discount is offered.
Hiroshi FUJIWARA Atsushi MATSUDA Toshihiro FUJITO
We consider a problem of the choice of price plans offered by a telecommunications company: a “pay-as-you-go” plan and a “flat-rate” plan. This problem is formulated as an online optimization problem extending the ski-rental problem, and analyzed using the competitive ratio. We give a lemma for easily calculating the competitive ratio. Based on the lemma, we derive a family of optimal strategies for a realistic class of instances.
Hiroshi FUJIWARA Yasuhiro KONNO Toshihiro FUJITO
The multislope ski-rental problem is an extension of the classical ski-rental problem, where the player has several options of paying both of a per-time fee and an initial fee, in addition to pure renting and buying options. Damaschke gave a lower bound of 3.62 on the competitive ratio for the case where arbitrary number of options can be offered. In this paper we propose a scheme that for the number of options given as an input, provides a lower bound on the competitive ratio, by extending the method of Damaschke. This is the first to establish a lower bound for each of the 5-or-more-option cases, for example, a lower bound of 2.95 for the 5-option case, 3.08 for the 6-option case, and 3.18 for the 7-option case. Moreover, it turns out that our lower bounds for the 3- and 4-option cases respectively coincide with the known upper bounds. We therefore conjecture that our scheme in general derives a matching lower and upper bound.