1-2hit |
Takashi KAWAMOTO Masato SUZUKI Takayuki NOTO
A serial ATA PHY fabricated in a 0.15-µm CMOS process performs the serial ATA operation in an asynchronous transition by using large variation in the reference clock. This technique calibrates a transmission signal frequency by utilizing the received signal. This is achieved by calibrating the divide ratio of a spread-spectrum clock generator (SSCG). This technique enables a serial ATA PHY to use reference oscillators with a production-frequency tolerance of less than 400ppm, i.e., higher than the permissible TX frequency variations (i.e., 350ppm). The calibrated transmission signal achieved a total jitter of 3.9ps.
Takashi KAWAMOTO Masato SUZUKI Takayuki NOTO
A technique that enables a SSCG to fine-tune an output signal frequency and a spread ratio is presented. Proposed SSCG achieves the output signal frequency from 1.2 GHz to 3.0 GHz and the spread ratio from 0 to 30000 ppm. The fine-tuning technique achieves 30 ppm adjustment of the output signal frequency and 200 ppm adjustment of the spread ratio. This technique is achieved by controlling a triangular modulation signal characteristics generated by a proposed digital controlled wave generator. A proposed multi-modulus divider can have a divide ratio of 4/5 and 8/9. This SSCG has been fabricated in a 0.13-µm CMOS process. The output signal frequency-range and the spread ratio are achieved fluently from 0.1 to 3.0 GHz and from 0 to 30000 ppm, respectively. EMI noise is suppressed at less than 17.1 dB at the output signal frequency of 3.0 GHz and spread ratio of 30000 ppm.