1-2hit |
Linchen CHANG Kazuhiko FUKAWA Hiroshi SUZUKI Satoshi SUYAMA
This paper proposes a precoding scheme for downlink multiuser MIMO-OFDM systems. The proposed precoding employs the minimum average bit error rate (MABER) criterion, and obtains precoding matrices by the steepest descent algorithm in order to minimize average BER of mobile stations. As the cost function of the proposed scheme, an upper bound of the average BER is derived from the pairwise error probability (PEP) and is averaged with respect to channel state information (CSI) errors. Thus, the MABER scheme is robust against imperfect CSI. Computer simulations under a frequency-selective fading condition demonstrate that the proposed precoder is more robust against the CSI errors than both the zero-forcing (ZF) precoder and a robust sum mean square error (SMSE) precoder, and that it is superior in BER to the conventional schemes.
Kazuo MUROTA Ken'ichiro TANAKA
The concept of M-convex functions has recently been generalized for functions defined on constant-parity jump systems. The b-matching problem and its generalization provide canonical examples of M-convex functions on jump systems. In this paper, we propose a steepest descent algorithm for minimizing an M-convex function on a constant-parity jump system.