1-5hit |
Ho-Cheon WEY Masayuki KAWAMATA
This paper presents a novel image coding scheme based on separate coding of region and residue sources. In a subband image coding scheme, quantization errors in each subimage spread over the reconstructed image and result in a blurring or a boundary artifact. To obtain high compression ratio without considerable degradation, an input image, in our scheme, is separated into region and residue sources which are coded using different coding schemes. The region source is coded by adaptive arithmetic coder. The residue source is coded using multiresolution subimages generated by applying a subband filter. Each block in the subimages is predicted by an affine transformation of blocks in lower resolution subimages. Experimental results show that a high coding efficiency is achieved using the proposed scheme, especially in terms of the subjective visual quality and PSNR at low bit-rate compression.
Takayuki NAGAI Masaaki IKEHARA
In this paper, the Lapped Orthogonal Transform (LOT) with unequal length basis function is considered. The proposed unequal length LOT (ULLOT) has both long basis of length 2M and short basis of length M, while the lengths of all bases of the conventional LOT are 2M. A new class of LOT can be constructed with some modifications of Malvar's Fast LOT. Therefore, the fast algorithm for the Discrete Cosine Transform (DCT) will surely facilitate the computation of the ULLOT. Although the computational complexity of the ULLOT is always lower than that of the LOT, there exist some cases where the coding gain of the ULLOT becomes slightly higher than that of the LOT. Its ability to reduce ringing artifacts is an attractive feature as well. The size-limited structure for the finite length signal is investigated and the ULLOTs are tested on image coding application. The simulation results confirm the validity of the proposed ULLOT.
In this letter, a design method of linear-phase paraunitary filter banks is proposed for an odd number of channels. In the proposed method, a non-linear unconstrained optimization process is assumed to be applied to a lattice structure which makes the starting guess of design parameters simple. In order to avoid insignificant local minimum solutions, a recursive initialization procedure is proposed. The significance of our proposed method is verified by some design examples.
In this work, a new structure of M-channel linear-phase paraunitary filter banks is proposed, where M is even. Our proposed structure can be regarded as a modification of the conventional generalized linear-phase lapped orthogonal transforms (GenLOT) based on the discrete cosine transform (DCT). The main purpose of this work is to overcome the limitation of the conventional DCT-based GenLOT, and improve the performance of the fast implementation. It is shown that our proposed fast GenLOT is superior to that of the conventional technique in terms of the coding gain. This work also provides a recursive initialization design procedure so as to avoid insignificant local-minimum solutions in the non-linear optimization processes. In order to verify the significance of our proposed method, several design examples are given. Furthermore, it is shown that the fast implementation can be used to construct M-band linear-phase orthonormal wavelets with regularity.
Hitoshi KIYA Kiyoshi NISHIKAWA Masahiko SAGAWA
One of the problems with subband image coding is the increase in image sizes caused by filtering. To solve this, it has been proposed to process the filtering by transforming input sequence into a periodic one. Then filtering is implemented by circular convolution. Although this technique solves the problem, there are very strong restrictions, i.e., limitation on the filter type and on the filter bank structure. In this paper, development of this technique is presented. Consequently, any type of linear phase FIR filter and any structure of filter bank can be used.