1-5hit |
In this letter, we propose a simple algorithm to jointly estimate the symbol timing offset (STO) and carrier frequency offset (CFO) of wireless body area network (WBAN) signals. The preamble specified in IEEE 802.15.6 WBAN is used to achieve an accurate timing and frequency estimation based on the differential correlation. Simulations demonstrate that the proposed joint estimation scheme can be effectively employed to get accurate STO and CFO estimate with less complexity.
In this letter, we present a low-complexity residual symbol timing offset (STO) estimation scheme in a long term evolution (LTE) downlink system. The proposed scheme is designed to estimate STO without a priori knowledge of cell-specific reference signals, which reduces the arithmetic complexity while maintaining a similar performance to the conventional algorithm.
Won-Jae SHIN Young-Hwan YOU Moo-Young KIM
In this letter, an improved residual symbol timing offset (STO) estimation scheme is suggested in an orthogonal frequency division multiplexing (OFDM) based digital radio mondiale plus (DRM+) system with cyclic delay diversity (CDD). The robust residual STO estimator is derived by properly selecting the amount of cyclic delay and a pilot pattern in the presence of frequency selectivity. Via computer simulation, it is shown that the proposed STO estimation scheme is robust to the frequency selectivity of the channel, with a performance better than the conventional scheme.
Kyung Won PARK Kyu In LEE Yong Soo CHO
In this letter, a concept of virtual smart antenna (SA) is introduced for OFDM-based cellular systems with a frequency reuse factor equal to 1. A method of estimating intercell symbol timing offsets (STOs) from received OFDM signals impinging on virtual antenna is proposed for users at a cell boundary. Also, adaptive beamforming methods for virtual SA are proposed to reduce intercell interference (ICI) from adjacent base stations (BSs).
A robust joint symbol timing and fractional frequency offset estimator for OFDM systems in multipath fading channels is proposed based on cyclic shifting and autocorrelation properties of PN codes. A new timing metric is also introduced by considering the delay spread to improve the robustness of the estimator in the multipath fading channels.