1-4hit |
Kouji WADA Shinya WATANABE Ryousuke SUGA Osamu HASHIMOTO
This paper focuses on the characteristics of tunable half-wavelength resonators and their applications to bandpass filters (BPFs). First, the resonance characteristics of various tunable half-wavelength resonators are examined for the tunabilities of transmission zeros and the center frequency of the proposed BPFs. We examine four types of tunable half-wavelength resonators, namely, an end-coupling resonator and three types of tap-coupling resonators. Secondly, the proposition and design of two types of BPFs using acquired resonators are carried out. The fabrication and experimental application of the resonators and designed BPFs are also performed based on coplanar waveguide (CPW) technologies. Their calculated and measured results are compared with each other. The results show that tunabilities of the transmission zero and the center frequency of the proposed BPF are obtained as expected.
Kouji WADA Yoshiyuki AIHARA Tomohide KAMIYAMA Osamu HASHIMOTO
In this paper, the method of locating multiple transmission zeros by the tap-coupling technique is described for bandpass filters (BPFs), using short-ended λ/2 resonators and its application to a duplexer. First, the method of locating the transmission zero using the short-ended λ/2 resonators is examined with various excitation methods. We focus on four types of short-ended λ/2 resonators: the end-coupling type, tap-coupling type, capacitive tap-coupling type and inductive tap-coupling type. Secondly, the BPFs based on the basic characteristics of the respective resonators are proposed and designed on the basis of a general filter theory with narrow band approximation. Lastly, we propose and design new duplexers consisting of the proposed BPFs. The results lead to the conclusion that the basic characteristics of the short-ended λ/2 resonators are useful for realizing a BPF with multiple transmission zeros and a high-performance duplexer fabricated without increasing the number of elements.
Kouji WADA Yoshiyuki AIHARA Osamu HASHIMOTO Hiroshi HARADA
Basic characteristics of a short-ended half-wavelength resonator made of a coplanar waveguide (CPW) and their applications to bandpass filters (BPFs) are discussed. The first part of this paper gives the essence for improving out-of-band characteristics of the BPF by describing the basic characteristics of a tap-coupled resonator. Secondly, a new BPF with attenuation poles using the short-ended half-wavelength CPW resonators is proposed and realized. It is confirmed that our methodology is useful for improving out-of-band characteristics of the BPF using the short-ended half-wavelength CPW resonators without complicated filter design.
An intrinsic property of a tapped resonator is elucidated here, and a novel bandpass filter (BPF) with improved skirt characteristics based on a tapped half-wavelength resonator is proposed by this intrinsic property. "Tapping" for both I/O and interstage couplings of the resonator is the key concept here because a resulting open-ended resonator makes shunt open stubs which give anti-resonance near the center frequency. Multiple attenuation poles appear near the center frequency, namely, close to the passband. A BPF is designed on the basis of the general filter theory with a narrow band approximation. An experiment is carried out to confirm the concept by using a coplanar structure. The expected bandpass characteristics with multiple attenuation poles have been obtained by the novel BPF designed by the present concept.