Keyword Search Result

[Keyword] ultra-high resolution(2hit)

1-2hit
  • Full-Aperture Processing of Ultra-High Resolution Spaceborne SAR Spotlight Data Based on One-Step Motion Compensation Algorithm

    Tianshun XIANG  Daiyin ZHU  

     
    PAPER-Remote Sensing

      Pubricized:
    2018/08/21
      Vol:
    E102-B No:2
      Page(s):
    247-256

    With the development of spaceborne synthetic aperture radar (SAR), ultra-high spatial resolution has become a hot topic in recent years. The system with high spatial resolution requests large range bandwidths and long azimuth integration time. However, due to the long azimuth integration time, many problems arise, which cannot be ignored in the operational ultra-high resolution spotlight mode. This paper investigates two critical issues that need to be noticed for the full-aperture processing of ultra-high resolution spaceborne SAR spotlight data. The first one is the inaccuracy of the traditional hyperbolic range model (HRM) when the system approaches decimeter range resolution. The second one is the azimuth spectral folding phenomenon. The problems mentioned above result in significant degradation of the focusing effect. Thus, to solve these problems, a full-aperture processing scheme is proposed in this paper which combines the superiorities of two generally utilized processing algorithms: the precision of one-step motion compensation (MOCO) algorithm and the efficiency of modified two-step processing approach (TSA). Firstly, one-step MOCO algorithm, a state-of-the-art MOCO algorithm which has been applied in ultra-high resolution airborne SAR systems, can precisely correct for the error caused by spaceborne curved orbit. Secondly, the modified TSA can avoid the phenomenon of azimuth spectrum folding effectively. The key point of the modified TSA is the deramping approach which is carried out via the convolution operation. The reference function, varying with the instantaneous range frequency, is adopted by the convolution operation for obtaining the unfolding spectrum in azimuth direction. After these operations, the traditional wavenumber domain algorithm is available because the error caused by spaceborne curved orbit and the influence of the spectrum folding in azimuth direction have been totally resolved. Based on this processing scheme, the ultra-high resolution spaceborne SAR spotlight data can be well focused. The performance of the full-aperture processing scheme is demonstrated by point targets simulation.

  • Low Power Consumption Technology for Ultra-High Resolution Mobile Display by Using RGBW System Open Access

    Akira SAKAIGAWA  Masaaki KABE  Tsutomu HARADA  Fumitaka GOTO  Naoyuki TAKASAKI  Masashi MITSUI  Tae NAKAHARA  Kojiro IKEDA  Kenta SEKI  Toshiyuki NAGATSUMA  Amane HIGASHI  

     
    INVITED PAPER

      Vol:
    E96-C No:11
      Page(s):
    1367-1372

    Battery life and outdoor visibility are two of the most important features for mobile applications today. It is desirable to achieve both low power consumption and excellent outdoor visibility on the display device at the same time. We have previously reported a new RGBW method to realize low power consumption and high luminance with high image quality. In this paper, the basic concept of a new RGBW calculation utilizing an “Extended HSV color space” model is described, and also its performance, such as low power consumption, color image reproducibility and outdoor visibility is presented. The new method focuses on the luminance-increase ratio by means of a White signal for the display image data, and derives the appropriate RGBW signal and backlight PWM signal for every frame period. This dynamically controlled system solves the problems of conventional RGBW systems, and realizes the same image quality as a corresponding RGB display. In order to quantify its color image reproducibility, a spectroscopic measurement has been completed using the Macbeth Color Chart. In addition, the advantages of high luminance by the new RGBW method is described. The converted tone curve with an RGBW method provides very high luminance, such as 1,000cd/m2, and improved outdoor visibility. Finally, a newly developed 4.38-inch full-HD (1,080 × 1,920) 503ppi prototype LCD utilizing this new RGBW technology is described.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.