Keyword Search Result

[Keyword] ultra-wideband radar(2hit)

1-2hit
  • Noncontact Monitoring of Heartbeat and Movements during Sleep Using a Pair of Millimeter-Wave Ultra-Wideband Radar Systems Open Access

    Takuya SAKAMOTO  Sohei MITANI  Toru SATO  

     
    PAPER-Sensing

      Pubricized:
    2020/10/06
      Vol:
    E104-B No:4
      Page(s):
    463-471

    We experimentally evaluate the performance of a noncontact system that measures the heartbeat of a sleeping person. The proposed system comprises a pair of radar systems installed at two different positions. We use millimeter-wave ultra-wideband multiple-input multiple-output array radar systems and evaluate the performance attained in measuring the heart inter-beat interval and body movement. The importance of using two radar systems instead of one is demonstrated in this paper. We conduct three types of experiments; the first and second experiments are radar measurements of three participants lying on a bed with and without body movement, while the third experiment is the radar measurement of a participant actually sleeping overnight. The experiments demonstrate that the performance of the radar-based vital measurement strongly depends on the orientation of the person under test. They also show that the proposed system detects 70% of rolling-over movements made overnight.

  • False Image Suppression in Two-Dimensional Shape Estimates of a Walking Human Using Multiple Ultra-Wideband Doppler Radar Interferometers

    Hiroki YAMAZAKI  Takuya SAKAMOTO  Hirofumi TAKI  Toru SATO  

     
    PAPER-Sensing

      Vol:
    E99-B No:1
      Page(s):
    134-142

    Microwave systems have a number of promising applications in surveillance and monitoring systems. The main advantage of microwave systems is their ability to detect targets at distance under adverse conditions such as dim, smoky, and humid environments. Specifically, the wide bandwidth of ultra-wideband radar enables high range resolution. In a previous study, we proposed an accurate shape estimation algorithm for multiple targets using multiple ultra-wideband Doppler interferometers. However, this algorithm produces false image artifacts under conditions with severe interference. The present paper proposes a technique to suppress such false images by detecting inconsistent combinations of the radial velocity and time derivative of image positions. We study the performance of the proposed method through numerical simulations of a two-dimensional section of a moving human body, and demonstrate the remarkable performance of the proposed method in suppressing false image artifacts in many scenarios.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.