Keyword Search Result

[Keyword] unpack(4hit)

1-4hit
  • BareUnpack: Generic Unpacking on the Bare-Metal Operating System

    Binlin CHENG  Pengwei LI  

     
    PAPER-Information Network

      Pubricized:
    2018/09/12
      Vol:
    E101-D No:12
      Page(s):
    3083-3091

    Malware has become a growing threat as malware writers have learned that signature-based detectors can be easily evaded by packing the malware. Packing is a major challenge to malware analysis. The generic unpacking approach is the major solution to the threat of packed malware, and it is based on the intrinsic nature of the execution of packed executables. That is, the original code should be extracted in memory and get executed at run-time. The existing generic unpacking approaches need a simulated environment to monitor the executing of the packed executables. Unfortunately, the simulated environment is easily detected by the environment-sensitive packers. It makes the existing generic unpacking approaches easily evaded by the packer. In this paper, we propose a novel unpacking approach, BareUnpack, to monitor the execution of the packed executables on the bare-metal operating system, and then extracts the hidden code of the executable. BareUnpack does not need any simulated environment (debugger, emulator or VM), and it works on the bare-metal operating system directly. Our experimental results show that BareUnpack can resist the environment-sensitive packers, and improve the unpacking effectiveness, which outperforms other existing unpacking approaches.

  • An Accurate Packer Identification Method Using Support Vector Machine

    Ryoichi ISAWA  Tao BAN  Shanqing GUO  Daisuke INOUE  Koji NAKAO  

     
    PAPER-Foundations

      Vol:
    E97-A No:1
      Page(s):
    253-263

    PEiD is a packer identification tool widely used for malware analysis but its accuracy is becoming lower and lower recently. There exist two major reasons for that. The first is that PEiD does not provide a way to create signatures, though it adopts a signature-based approach. We need to create signatures manually, and it is difficult to catch up with packers created or upgraded rapidly. The second is that PEiD utilizes exact matching. If a signature contains any error, PEiD cannot identify the packer that corresponds to the signature. In this paper, we propose a new automated packer identification method to overcome the limitations of PEiD and report the results of our numerical study. Our method applies string-kernel-based support vector machine (SVM): it can measure the similarity between packed programs without our operations such as manually creating signature and it provides some error tolerant mechanism that can significantly reduce detection failure caused by minor signature violations. In addition, we use the byte sequence starting from the entry point of a packed program as a packer's feature given to SVM. That is, our method combines the advantages from signature-based approach and machine learning (ML) based approach. The numerical results on 3902 samples with 26 packer classes and 3 unpacked (not-packed) classes shows that our method achieves a high accuracy of 99.46% outperforming PEiD and an existing ML-based method that Sun et al. have proposed.

  • An Empirical Evaluation of an Unpacking Method Implemented with Dynamic Binary Instrumentation

    Hyung Chan KIM  Tatsunori ORII  Katsunari YOSHIOKA  Daisuke INOUE  Jungsuk SONG  Masashi ETO  Junji SHIKATA  Tsutomu MATSUMOTO  Koji NAKAO  

     
    PAPER-Information Network

      Vol:
    E94-D No:9
      Page(s):
    1778-1791

    Many malicious programs we encounter these days are armed with their own custom encoding methods (i.e., they are packed) to deter static binary analysis. Thus, the initial step to deal with unknown (possibly malicious) binary samples obtained from malware collecting systems ordinarily involves the unpacking step. In this paper, we focus on empirical experimental evaluations on a generic unpacking method built on a dynamic binary instrumentation (DBI) framework to figure out the applicability of the DBI-based approach. First, we present yet another method of generic binary unpacking extending a conventional unpacking heuristic. Our architecture includes managing shadow states to measure code exposure according to a simple byte state model. Among available platforms, we built an unpacking implementation on PIN DBI framework. Second, we describe evaluation experiments, conducted on wild malware collections, to discuss workability as well as limitations of our tool. Without the prior knowledge of 6029 samples in the collections, we have identified at around 64% of those were analyzable with our DBI-based generic unpacking tool which is configured to operate in fully automatic batch processing. Purging corrupted and unworkable samples in native systems, it was 72%.

  • An Automatic Unpacking Method for Computer Virus Effective in the Virus Filter Based on Paul Graham's Bayesian Theorem

    Dengfeng ZHANG  Naoshi NAKAYA  Yuuji KOUI  Hitoaki YOSHIDA  

     
    PAPER

      Vol:
    E92-B No:4
      Page(s):
    1119-1127

    Recently, the appearance frequency of computer virus variants has increased. Updates to virus information using the normal pattern matching method are increasingly unable to keep up with the speed at which viruses occur, since it takes time to extract the characteristic patterns for each virus. Therefore, a rapid, automatic virus detection algorithm using static code analysis is necessary. However, recent computer viruses are almost always compressed and obfuscated. It is difficult to determine the characteristics of the binary code from the obfuscated computer viruses. Therefore, this paper proposes a method that unpacks compressed computer viruses automatically independent of the compression format. The proposed method unpacks the common compression formats accurately 80% of the time, while unknown compression formats can also be unpacked. The proposed method is effective against unknown viruses by combining it with the existing known virus detection system like Paul Graham's Bayesian Virus Filter etc.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.