Keyword Search Result

[Keyword] vehicle motion model(2hit)

1-2hit
  • Simplified Vehicle Vibration Modeling for Image Sensor Communication

    Masayuki KINOSHITA  Takaya YAMAZATO  Hiraku OKADA  Toshiaki FUJII  Shintaro ARAI  Tomohiro YENDO  Koji KAMAKURA  

     
    PAPER

      Vol:
    E101-A No:1
      Page(s):
    176-184

    Image sensor communication (ISC), derived from visible light communication (VLC) is an attractive solution for outdoor mobile environments, particularly for intelligent transport systems (ITS). In ITS-ISC, tracking a transmitter in the image plane is critical issue since vehicle vibrations make it difficult to selsct the correct pixels for data reception. Our goal in this study is to develop a precise tracking method. To accomplish this, vehicle vibration modeling and its parameters estimation, i.e., represetative frequencies and their amplitudes for inherent vehicle vibration, and the variance of the Gaussian random process represnting road surface irregularity, are required. In this paper, we measured actual vehicle vibration in a driving situation and determined parameters based on the frequency characteristics. Then, we demonstrate that vehicle vibration that induces transmitter displacement in an image plane can be modeled by only Gaussian random processes that represent road surface irregularity when a high frame rate (e.g., 1000fps) image sensor is used as an ISC receiver. The simplified vehicle vibration model and its parameters are evaluated by numerical analysis and experimental measurement and obtained result shows that the proposed model can reproduce the characteristics of the transmitter displacement sufficiently.

  • Extended Feature Descriptor and Vehicle Motion Model with Tracking-by-Detection for Pedestrian Active Safety

    Hirokatsu KATAOKA  Kimimasa TAMURA  Kenji IWATA  Yutaka SATOH  Yasuhiro MATSUI  Yoshimitsu AOKI  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E97-D No:2
      Page(s):
    296-304

    The percentage of pedestrian deaths in traffic accidents is on the rise in Japan. In recent years, there have been calls for measures to be introduced to protect vulnerable road users such as pedestrians and cyclists. In this study, a method to detect and track pedestrians using an in-vehicle camera is presented. We improve the technology of detecting pedestrians by using the highly accurate images obtained with a monocular camera. In the detection step, we employ ECoHOG as the feature descriptor; it accumulates the integrated gradient intensities. In the tracking step, we apply an effective motion model using optical flow and the proposed feature descriptor ECoHOG in a tracking-by-detection framework. These techniques were verified using images captured on real roads.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.