1-4hit |
Yanzhi SUN Muqing WU Jianming LIU Chaoyi ZHANG
In this letter, a quantization error-aware Tomlinson-Harashinma Precoding (THP) is proposed based on the equivalent zero-forcing (ZF) criterion in Multiuser Multiple-Input Single-Output (MU-MISO) systems with limited feedback, where the transmitter has only quantized channel direction information (CDI). This precoding scheme is robust to the channel uncertainties arising from the quantization error and the lack of channel magnitude information (CMI). Our simulation results show that the new THP scheme outperforms the conventional precoding scheme in limited feedback systems with respect to Bit Error Ratio (BER).
In this letter, we consider a novel ultra-wideband (UWB) spatial multiplexing (SM) multiple input multiple output (MIMO) structure, which consists of prerake diversity combiners in the transmitter and a zero forcing (ZF) detector in the receiver. For a UWB SM MIMO system with N transmit antennas, M receive antennas, and L resolvable multipath components, it is shown that the proposed prerake combining-based MIMO detection scheme has the diversity order of (LN-M+1) and its BER performance is analytically presented in a log-normal fading channel and also compared with that of a rake combining-based ZF scheme.
The performance of ultra-wideband (UWB) multiple input multiple output (MIMO) receiver based on the RAKE maximal ratio combiner (MRC) followed by a zero forcing (ZF) detector is analytically examined. For a UWB MIMO system with NT transmit antennas, NR receive antennas, and L resolvable multipath components, the proposed MIMO detection scheme is shown to have the diversity order of LNR-NT+1 and its analytical error rate expression is presented in a log-normal fading channel. We also compare the analytical BERs with the simulated results.
Daisuke TAKASE Tomoaki OHTSUKI
We propose optical wireless multiple-input multiple-output (OMIMO) communications to achieve high speed transmission with a compact transmitter and receiver. In OMIMO, by using zero forcing (ZF), minimum mean square error (MMSE) or other detection techniques, we can eliminate the interference from the other optical transmit antennas. In this paper, we employ ZF as the detection technique. We analyze the signal-to-interference-plus-noise ratio (SINR) and the bit error rate (BER) of the proposed OMIMO with a linear array and a square array of optical transmit and receive antennas, where we employ subcarrier multiplexing (SCM) for each optical transmit antenna. Note that the proposed OMIMO is applicable to other arrangements of optical transmit and receive antennas. We show that the proposed OMIMO system can realize MIMO multiplexing and achieve high speed transmission by correctly aligning the optical transmit and receive antennas and the transmitter semiangle.