The "Proactive Desk" is a new human-machine interface for the desktop operations of computers. It provides users with tactile sensation in addition to visual sensation. Two linear induction motors underneath the desk generate a two-dimensional force to move objects and control their positions on the desktop using feedback control, and users feel tactile sensation while handling those objects. In this paper, we examined the effects of adding haptic information to simple mouse operation using the Proactive Desk. In our experiment, we used a button-type visual stimulus with and without haptic information. When using haptic conditions, three types of force feedback pattern were displayed: "Edge," "Resistance to motion" and "Attractive force," and each had three force strength conditions: no, half and full. The subject was asked to push buttons twenty times as the buttons were shown one after the other on the desk as quickly as possible. Consequently, the reaction times for pushing the button for all haptic conditions, except for the half-force condition of "Attractive force," were significantly faster than no-force (without haptic information) condition. This result shows that the haptic information was advantageous for easy operation.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Shunsuke YOSHIDA, Kenji SUSAMI, Haruo NOMA, Kenichi HOSAKA, "Proactive Desk: New Haptic Interface and Its Experimental Evaluation" in IEICE TRANSACTIONS on Communications,
vol. E89-B, no. 2, pp. 320-325, February 2006, doi: 10.1093/ietcom/e89-b.2.320.
Abstract: The "Proactive Desk" is a new human-machine interface for the desktop operations of computers. It provides users with tactile sensation in addition to visual sensation. Two linear induction motors underneath the desk generate a two-dimensional force to move objects and control their positions on the desktop using feedback control, and users feel tactile sensation while handling those objects. In this paper, we examined the effects of adding haptic information to simple mouse operation using the Proactive Desk. In our experiment, we used a button-type visual stimulus with and without haptic information. When using haptic conditions, three types of force feedback pattern were displayed: "Edge," "Resistance to motion" and "Attractive force," and each had three force strength conditions: no, half and full. The subject was asked to push buttons twenty times as the buttons were shown one after the other on the desk as quickly as possible. Consequently, the reaction times for pushing the button for all haptic conditions, except for the half-force condition of "Attractive force," were significantly faster than no-force (without haptic information) condition. This result shows that the haptic information was advantageous for easy operation.
URL: https://globals.ieice.org/en_transactions/communications/10.1093/ietcom/e89-b.2.320/_p
Copy
@ARTICLE{e89-b_2_320,
author={Shunsuke YOSHIDA, Kenji SUSAMI, Haruo NOMA, Kenichi HOSAKA, },
journal={IEICE TRANSACTIONS on Communications},
title={Proactive Desk: New Haptic Interface and Its Experimental Evaluation},
year={2006},
volume={E89-B},
number={2},
pages={320-325},
abstract={The "Proactive Desk" is a new human-machine interface for the desktop operations of computers. It provides users with tactile sensation in addition to visual sensation. Two linear induction motors underneath the desk generate a two-dimensional force to move objects and control their positions on the desktop using feedback control, and users feel tactile sensation while handling those objects. In this paper, we examined the effects of adding haptic information to simple mouse operation using the Proactive Desk. In our experiment, we used a button-type visual stimulus with and without haptic information. When using haptic conditions, three types of force feedback pattern were displayed: "Edge," "Resistance to motion" and "Attractive force," and each had three force strength conditions: no, half and full. The subject was asked to push buttons twenty times as the buttons were shown one after the other on the desk as quickly as possible. Consequently, the reaction times for pushing the button for all haptic conditions, except for the half-force condition of "Attractive force," were significantly faster than no-force (without haptic information) condition. This result shows that the haptic information was advantageous for easy operation.},
keywords={},
doi={10.1093/ietcom/e89-b.2.320},
ISSN={1745-1345},
month={February},}
Copy
TY - JOUR
TI - Proactive Desk: New Haptic Interface and Its Experimental Evaluation
T2 - IEICE TRANSACTIONS on Communications
SP - 320
EP - 325
AU - Shunsuke YOSHIDA
AU - Kenji SUSAMI
AU - Haruo NOMA
AU - Kenichi HOSAKA
PY - 2006
DO - 10.1093/ietcom/e89-b.2.320
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E89-B
IS - 2
JA - IEICE TRANSACTIONS on Communications
Y1 - February 2006
AB - The "Proactive Desk" is a new human-machine interface for the desktop operations of computers. It provides users with tactile sensation in addition to visual sensation. Two linear induction motors underneath the desk generate a two-dimensional force to move objects and control their positions on the desktop using feedback control, and users feel tactile sensation while handling those objects. In this paper, we examined the effects of adding haptic information to simple mouse operation using the Proactive Desk. In our experiment, we used a button-type visual stimulus with and without haptic information. When using haptic conditions, three types of force feedback pattern were displayed: "Edge," "Resistance to motion" and "Attractive force," and each had three force strength conditions: no, half and full. The subject was asked to push buttons twenty times as the buttons were shown one after the other on the desk as quickly as possible. Consequently, the reaction times for pushing the button for all haptic conditions, except for the half-force condition of "Attractive force," were significantly faster than no-force (without haptic information) condition. This result shows that the haptic information was advantageous for easy operation.
ER -