There are many system proposals for satellite-based broadband communications that promise high capacity and ease of access. Many of these proposals require advanced switching technology and signal processing on-board the satellite(s). One solution is based on a geo-synchronous (GEO) satellite system equipped with on-board processing and on-board switching. An important feature of this system is allowing for a maximum number of simultaneous users, hence, requiring effective medium access control (MAC) layer protocols for connection admission control (CAC) and bandwidth on demand (BoD) algorithms. In this paper, an integrated CAC and BoD algorithm is proposed for a broadband satellite communication system with heterogeneous traffic. A detailed modeling and simulation approach is presented for performance evaluation of the integrated CAC and BoD algorithm based on heterogeneous traffic types. The proposed CAC and BoD scheme is shown to be able to efficiently utilize available bandwidth and to gain high throughput, and also to maintain good Grade of Service (GoS) for all the traffic types. The end-to-end delay for real-time traffic in the system falls well within ITU's Quality of Service (QoS) specification for GEO-based satellite systems.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yi QIAN, Rose Qingyang HU, Catherine ROSENBERG, "Integrated Connection Admission Control and Bandwidth on Demand Algorithm for a Broadband Satellite Network with Heterogeneous Traffic" in IEICE TRANSACTIONS on Communications,
vol. E89-B, no. 3, pp. 895-905, March 2006, doi: 10.1093/ietcom/e89-b.3.895.
Abstract: There are many system proposals for satellite-based broadband communications that promise high capacity and ease of access. Many of these proposals require advanced switching technology and signal processing on-board the satellite(s). One solution is based on a geo-synchronous (GEO) satellite system equipped with on-board processing and on-board switching. An important feature of this system is allowing for a maximum number of simultaneous users, hence, requiring effective medium access control (MAC) layer protocols for connection admission control (CAC) and bandwidth on demand (BoD) algorithms. In this paper, an integrated CAC and BoD algorithm is proposed for a broadband satellite communication system with heterogeneous traffic. A detailed modeling and simulation approach is presented for performance evaluation of the integrated CAC and BoD algorithm based on heterogeneous traffic types. The proposed CAC and BoD scheme is shown to be able to efficiently utilize available bandwidth and to gain high throughput, and also to maintain good Grade of Service (GoS) for all the traffic types. The end-to-end delay for real-time traffic in the system falls well within ITU's Quality of Service (QoS) specification for GEO-based satellite systems.
URL: https://globals.ieice.org/en_transactions/communications/10.1093/ietcom/e89-b.3.895/_p
Copy
@ARTICLE{e89-b_3_895,
author={Yi QIAN, Rose Qingyang HU, Catherine ROSENBERG, },
journal={IEICE TRANSACTIONS on Communications},
title={Integrated Connection Admission Control and Bandwidth on Demand Algorithm for a Broadband Satellite Network with Heterogeneous Traffic},
year={2006},
volume={E89-B},
number={3},
pages={895-905},
abstract={There are many system proposals for satellite-based broadband communications that promise high capacity and ease of access. Many of these proposals require advanced switching technology and signal processing on-board the satellite(s). One solution is based on a geo-synchronous (GEO) satellite system equipped with on-board processing and on-board switching. An important feature of this system is allowing for a maximum number of simultaneous users, hence, requiring effective medium access control (MAC) layer protocols for connection admission control (CAC) and bandwidth on demand (BoD) algorithms. In this paper, an integrated CAC and BoD algorithm is proposed for a broadband satellite communication system with heterogeneous traffic. A detailed modeling and simulation approach is presented for performance evaluation of the integrated CAC and BoD algorithm based on heterogeneous traffic types. The proposed CAC and BoD scheme is shown to be able to efficiently utilize available bandwidth and to gain high throughput, and also to maintain good Grade of Service (GoS) for all the traffic types. The end-to-end delay for real-time traffic in the system falls well within ITU's Quality of Service (QoS) specification for GEO-based satellite systems.},
keywords={},
doi={10.1093/ietcom/e89-b.3.895},
ISSN={1745-1345},
month={March},}
Copy
TY - JOUR
TI - Integrated Connection Admission Control and Bandwidth on Demand Algorithm for a Broadband Satellite Network with Heterogeneous Traffic
T2 - IEICE TRANSACTIONS on Communications
SP - 895
EP - 905
AU - Yi QIAN
AU - Rose Qingyang HU
AU - Catherine ROSENBERG
PY - 2006
DO - 10.1093/ietcom/e89-b.3.895
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E89-B
IS - 3
JA - IEICE TRANSACTIONS on Communications
Y1 - March 2006
AB - There are many system proposals for satellite-based broadband communications that promise high capacity and ease of access. Many of these proposals require advanced switching technology and signal processing on-board the satellite(s). One solution is based on a geo-synchronous (GEO) satellite system equipped with on-board processing and on-board switching. An important feature of this system is allowing for a maximum number of simultaneous users, hence, requiring effective medium access control (MAC) layer protocols for connection admission control (CAC) and bandwidth on demand (BoD) algorithms. In this paper, an integrated CAC and BoD algorithm is proposed for a broadband satellite communication system with heterogeneous traffic. A detailed modeling and simulation approach is presented for performance evaluation of the integrated CAC and BoD algorithm based on heterogeneous traffic types. The proposed CAC and BoD scheme is shown to be able to efficiently utilize available bandwidth and to gain high throughput, and also to maintain good Grade of Service (GoS) for all the traffic types. The end-to-end delay for real-time traffic in the system falls well within ITU's Quality of Service (QoS) specification for GEO-based satellite systems.
ER -