Virtual Private Networks (VPNs) are overlay networks established on top of a public network backbone with the goal of providing a service comparable to Private Networks (PNs). The recently proposed VPN hose-model provides customers with flexible and convenient ways to specify their bandwidth requirements. To meet the specified bandwidth requirements, the Network Service Provider (NSP) must reserve sufficient bandwidth on the data transmission paths between each pair of endpoints in a VPN. In addition, the reliability of a VPN depends on the reliability of the data transmission paths. Italiano et al. proposed an algorithm that finds a set of backup paths for a given VPN (VPN tree) under the single-link failure model [1]. When a link failure is detected on a VPN tree, a backup path corresponding to the failed link can be activated to restore the disconnected VPN tree into a new one, thereby ensuring the reliability of the VPN. However, Italiano's algorithm cannot guarantee that the specified bandwidth requirement of the given VPN under the single-link failure model will be met. To address this issue, we propose a new backup path set selection algorithm called BANGUAD in this paper. In addition, the problem of establishing multiple bandwidth-guaranteed hose-model VPNs under the single-link failure model has not been investigated previously. However in this problem, bandwidth-sharing algorithms have the potential to improve the performance of a provisioning algorithm significantly. Therefore, we also propose a bandwidth sharing algorithm and three provisioning algorithms for establishing multiple bandwidth-guaranteed hose-model VPNs under the single-link failure model. Simulations that compare the performance of the proposed algorithms are reported.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yu-Liang LIU, Yeali Sunny SUN, Meng Chang CHEN, "Traffic Engineering for Provisioning Restorable Hose-Model VPNs" in IEICE TRANSACTIONS on Communications,
vol. E89-B, no. 9, pp. 2394-2403, September 2006, doi: 10.1093/ietcom/e89-b.9.2394.
Abstract: Virtual Private Networks (VPNs) are overlay networks established on top of a public network backbone with the goal of providing a service comparable to Private Networks (PNs). The recently proposed VPN hose-model provides customers with flexible and convenient ways to specify their bandwidth requirements. To meet the specified bandwidth requirements, the Network Service Provider (NSP) must reserve sufficient bandwidth on the data transmission paths between each pair of endpoints in a VPN. In addition, the reliability of a VPN depends on the reliability of the data transmission paths. Italiano et al. proposed an algorithm that finds a set of backup paths for a given VPN (VPN tree) under the single-link failure model [1]. When a link failure is detected on a VPN tree, a backup path corresponding to the failed link can be activated to restore the disconnected VPN tree into a new one, thereby ensuring the reliability of the VPN. However, Italiano's algorithm cannot guarantee that the specified bandwidth requirement of the given VPN under the single-link failure model will be met. To address this issue, we propose a new backup path set selection algorithm called BANGUAD in this paper. In addition, the problem of establishing multiple bandwidth-guaranteed hose-model VPNs under the single-link failure model has not been investigated previously. However in this problem, bandwidth-sharing algorithms have the potential to improve the performance of a provisioning algorithm significantly. Therefore, we also propose a bandwidth sharing algorithm and three provisioning algorithms for establishing multiple bandwidth-guaranteed hose-model VPNs under the single-link failure model. Simulations that compare the performance of the proposed algorithms are reported.
URL: https://globals.ieice.org/en_transactions/communications/10.1093/ietcom/e89-b.9.2394/_p
Copy
@ARTICLE{e89-b_9_2394,
author={Yu-Liang LIU, Yeali Sunny SUN, Meng Chang CHEN, },
journal={IEICE TRANSACTIONS on Communications},
title={Traffic Engineering for Provisioning Restorable Hose-Model VPNs},
year={2006},
volume={E89-B},
number={9},
pages={2394-2403},
abstract={Virtual Private Networks (VPNs) are overlay networks established on top of a public network backbone with the goal of providing a service comparable to Private Networks (PNs). The recently proposed VPN hose-model provides customers with flexible and convenient ways to specify their bandwidth requirements. To meet the specified bandwidth requirements, the Network Service Provider (NSP) must reserve sufficient bandwidth on the data transmission paths between each pair of endpoints in a VPN. In addition, the reliability of a VPN depends on the reliability of the data transmission paths. Italiano et al. proposed an algorithm that finds a set of backup paths for a given VPN (VPN tree) under the single-link failure model [1]. When a link failure is detected on a VPN tree, a backup path corresponding to the failed link can be activated to restore the disconnected VPN tree into a new one, thereby ensuring the reliability of the VPN. However, Italiano's algorithm cannot guarantee that the specified bandwidth requirement of the given VPN under the single-link failure model will be met. To address this issue, we propose a new backup path set selection algorithm called BANGUAD in this paper. In addition, the problem of establishing multiple bandwidth-guaranteed hose-model VPNs under the single-link failure model has not been investigated previously. However in this problem, bandwidth-sharing algorithms have the potential to improve the performance of a provisioning algorithm significantly. Therefore, we also propose a bandwidth sharing algorithm and three provisioning algorithms for establishing multiple bandwidth-guaranteed hose-model VPNs under the single-link failure model. Simulations that compare the performance of the proposed algorithms are reported.},
keywords={},
doi={10.1093/ietcom/e89-b.9.2394},
ISSN={1745-1345},
month={September},}
Copy
TY - JOUR
TI - Traffic Engineering for Provisioning Restorable Hose-Model VPNs
T2 - IEICE TRANSACTIONS on Communications
SP - 2394
EP - 2403
AU - Yu-Liang LIU
AU - Yeali Sunny SUN
AU - Meng Chang CHEN
PY - 2006
DO - 10.1093/ietcom/e89-b.9.2394
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E89-B
IS - 9
JA - IEICE TRANSACTIONS on Communications
Y1 - September 2006
AB - Virtual Private Networks (VPNs) are overlay networks established on top of a public network backbone with the goal of providing a service comparable to Private Networks (PNs). The recently proposed VPN hose-model provides customers with flexible and convenient ways to specify their bandwidth requirements. To meet the specified bandwidth requirements, the Network Service Provider (NSP) must reserve sufficient bandwidth on the data transmission paths between each pair of endpoints in a VPN. In addition, the reliability of a VPN depends on the reliability of the data transmission paths. Italiano et al. proposed an algorithm that finds a set of backup paths for a given VPN (VPN tree) under the single-link failure model [1]. When a link failure is detected on a VPN tree, a backup path corresponding to the failed link can be activated to restore the disconnected VPN tree into a new one, thereby ensuring the reliability of the VPN. However, Italiano's algorithm cannot guarantee that the specified bandwidth requirement of the given VPN under the single-link failure model will be met. To address this issue, we propose a new backup path set selection algorithm called BANGUAD in this paper. In addition, the problem of establishing multiple bandwidth-guaranteed hose-model VPNs under the single-link failure model has not been investigated previously. However in this problem, bandwidth-sharing algorithms have the potential to improve the performance of a provisioning algorithm significantly. Therefore, we also propose a bandwidth sharing algorithm and three provisioning algorithms for establishing multiple bandwidth-guaranteed hose-model VPNs under the single-link failure model. Simulations that compare the performance of the proposed algorithms are reported.
ER -