In orthogonal frequency-division multiplex access (OFDMA) uplink, the carrier-frequency offsets (CFOs) between the multiple transmitters and the receiver introduce inter-carrier interference (ICI) and severely degrade the performance. In this paper, based on the perfect estimation of each user's CFO, we propose two low-complexity iterative algorithms to cancel ICI due to CFOs, which are denoted as the basic algorithm and the improved algorithm with decision-feedback equalization (DFE), respectively. For the basic one, two theorems are proposed that yield a sufficient condition for the convergence of iterations. Moreover, the interference-power-evolution (IPE) charts are proposed to evaluate the convergence behavior of this interference cancellation algorithm. Motivated by the IPE chart, the procedure of DFE is introduced into the iterations, which is the basic idea of the improved algorithm. For this improved algorithm, the error-propagation effect are analyzed and suppressed by an efficient stopping criterion. From IPE charts and simulation results, it can be easily observed that the basic algorithm has the same capability of ICI cancellation as the linear optimal minimum mean square error (MMSE) method, but offers lower complexity, while the improved algorithm with DFE outperforms the MMSE method in terms of the bit-error rate (BER) performance.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Min HUANG, Xiang CHEN, Shidong ZHOU, Jing WANG, "Analysis of Iterative ICI Cancellation Algorithm for Uplink OFDMA Systems with Carrier-Frequency Offset" in IEICE TRANSACTIONS on Communications,
vol. E90-B, no. 7, pp. 1734-1745, July 2007, doi: 10.1093/ietcom/e90-b.7.1734.
Abstract: In orthogonal frequency-division multiplex access (OFDMA) uplink, the carrier-frequency offsets (CFOs) between the multiple transmitters and the receiver introduce inter-carrier interference (ICI) and severely degrade the performance. In this paper, based on the perfect estimation of each user's CFO, we propose two low-complexity iterative algorithms to cancel ICI due to CFOs, which are denoted as the basic algorithm and the improved algorithm with decision-feedback equalization (DFE), respectively. For the basic one, two theorems are proposed that yield a sufficient condition for the convergence of iterations. Moreover, the interference-power-evolution (IPE) charts are proposed to evaluate the convergence behavior of this interference cancellation algorithm. Motivated by the IPE chart, the procedure of DFE is introduced into the iterations, which is the basic idea of the improved algorithm. For this improved algorithm, the error-propagation effect are analyzed and suppressed by an efficient stopping criterion. From IPE charts and simulation results, it can be easily observed that the basic algorithm has the same capability of ICI cancellation as the linear optimal minimum mean square error (MMSE) method, but offers lower complexity, while the improved algorithm with DFE outperforms the MMSE method in terms of the bit-error rate (BER) performance.
URL: https://globals.ieice.org/en_transactions/communications/10.1093/ietcom/e90-b.7.1734/_p
Copy
@ARTICLE{e90-b_7_1734,
author={Min HUANG, Xiang CHEN, Shidong ZHOU, Jing WANG, },
journal={IEICE TRANSACTIONS on Communications},
title={Analysis of Iterative ICI Cancellation Algorithm for Uplink OFDMA Systems with Carrier-Frequency Offset},
year={2007},
volume={E90-B},
number={7},
pages={1734-1745},
abstract={In orthogonal frequency-division multiplex access (OFDMA) uplink, the carrier-frequency offsets (CFOs) between the multiple transmitters and the receiver introduce inter-carrier interference (ICI) and severely degrade the performance. In this paper, based on the perfect estimation of each user's CFO, we propose two low-complexity iterative algorithms to cancel ICI due to CFOs, which are denoted as the basic algorithm and the improved algorithm with decision-feedback equalization (DFE), respectively. For the basic one, two theorems are proposed that yield a sufficient condition for the convergence of iterations. Moreover, the interference-power-evolution (IPE) charts are proposed to evaluate the convergence behavior of this interference cancellation algorithm. Motivated by the IPE chart, the procedure of DFE is introduced into the iterations, which is the basic idea of the improved algorithm. For this improved algorithm, the error-propagation effect are analyzed and suppressed by an efficient stopping criterion. From IPE charts and simulation results, it can be easily observed that the basic algorithm has the same capability of ICI cancellation as the linear optimal minimum mean square error (MMSE) method, but offers lower complexity, while the improved algorithm with DFE outperforms the MMSE method in terms of the bit-error rate (BER) performance.},
keywords={},
doi={10.1093/ietcom/e90-b.7.1734},
ISSN={1745-1345},
month={July},}
Copy
TY - JOUR
TI - Analysis of Iterative ICI Cancellation Algorithm for Uplink OFDMA Systems with Carrier-Frequency Offset
T2 - IEICE TRANSACTIONS on Communications
SP - 1734
EP - 1745
AU - Min HUANG
AU - Xiang CHEN
AU - Shidong ZHOU
AU - Jing WANG
PY - 2007
DO - 10.1093/ietcom/e90-b.7.1734
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E90-B
IS - 7
JA - IEICE TRANSACTIONS on Communications
Y1 - July 2007
AB - In orthogonal frequency-division multiplex access (OFDMA) uplink, the carrier-frequency offsets (CFOs) between the multiple transmitters and the receiver introduce inter-carrier interference (ICI) and severely degrade the performance. In this paper, based on the perfect estimation of each user's CFO, we propose two low-complexity iterative algorithms to cancel ICI due to CFOs, which are denoted as the basic algorithm and the improved algorithm with decision-feedback equalization (DFE), respectively. For the basic one, two theorems are proposed that yield a sufficient condition for the convergence of iterations. Moreover, the interference-power-evolution (IPE) charts are proposed to evaluate the convergence behavior of this interference cancellation algorithm. Motivated by the IPE chart, the procedure of DFE is introduced into the iterations, which is the basic idea of the improved algorithm. For this improved algorithm, the error-propagation effect are analyzed and suppressed by an efficient stopping criterion. From IPE charts and simulation results, it can be easily observed that the basic algorithm has the same capability of ICI cancellation as the linear optimal minimum mean square error (MMSE) method, but offers lower complexity, while the improved algorithm with DFE outperforms the MMSE method in terms of the bit-error rate (BER) performance.
ER -