We analyze frame rates in low bit rate video coding and show that an optimal frame rate can be theoretically obtained. In low bit rate video coding the frame rate is usually forced to be decreased for reducing the total amount of coded information. The choice of frame rate, however, has a great effect on the picture quality in a trade-off relation between coded picture quality and motion smoothness. It is known from experience that in order to achieve an optimum balance between these two factors, a frame rate has to be selected which is appropriate for the coding scheme, property of the video sequences and coding bit rate. A theoretical analysis, however, on the existence of an optimal frame rate and how the optimal frame rate would be expressed has not been performed. In this paper, coding distortion measured by mean square error is analyzed by using video signal models such as a rate-distortion function for coded frames and inter-frame correlation coefficients for non-coded frames. Overall picture quality taking account of coded picture quality and motion smoothness simultaneously is expressed as a function of frame rate. This analysis shows that the optimum frame rate can be uniquely specified. The maximum frame rate is optimal when the coding bit rate is higher than a certain value for a given video scene, while a frame rate less than the maximum is optimal otherwise. The result of the theoretical analysis is compared with the results of computer simulation. In addition, the relation between this analysis and a subjective evaluation is described. From both comparisons this theoretical analysis can be justified as an effective scheme to indicate the optimal frame rate, and it shows the possibility of improving picture quality by selecting frame rate adaptively.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yasuhiro TAKISHIMA, Masahiro WADA, Hitomi MURAKAMI, "An Analysis of Optimal Frame Rate in Low Bit Rate Video Coding" in IEICE TRANSACTIONS on Communications,
vol. E76-B, no. 11, pp. 1389-1397, November 1993, doi: .
Abstract: We analyze frame rates in low bit rate video coding and show that an optimal frame rate can be theoretically obtained. In low bit rate video coding the frame rate is usually forced to be decreased for reducing the total amount of coded information. The choice of frame rate, however, has a great effect on the picture quality in a trade-off relation between coded picture quality and motion smoothness. It is known from experience that in order to achieve an optimum balance between these two factors, a frame rate has to be selected which is appropriate for the coding scheme, property of the video sequences and coding bit rate. A theoretical analysis, however, on the existence of an optimal frame rate and how the optimal frame rate would be expressed has not been performed. In this paper, coding distortion measured by mean square error is analyzed by using video signal models such as a rate-distortion function for coded frames and inter-frame correlation coefficients for non-coded frames. Overall picture quality taking account of coded picture quality and motion smoothness simultaneously is expressed as a function of frame rate. This analysis shows that the optimum frame rate can be uniquely specified. The maximum frame rate is optimal when the coding bit rate is higher than a certain value for a given video scene, while a frame rate less than the maximum is optimal otherwise. The result of the theoretical analysis is compared with the results of computer simulation. In addition, the relation between this analysis and a subjective evaluation is described. From both comparisons this theoretical analysis can be justified as an effective scheme to indicate the optimal frame rate, and it shows the possibility of improving picture quality by selecting frame rate adaptively.
URL: https://globals.ieice.org/en_transactions/communications/10.1587/e76-b_11_1389/_p
Copy
@ARTICLE{e76-b_11_1389,
author={Yasuhiro TAKISHIMA, Masahiro WADA, Hitomi MURAKAMI, },
journal={IEICE TRANSACTIONS on Communications},
title={An Analysis of Optimal Frame Rate in Low Bit Rate Video Coding},
year={1993},
volume={E76-B},
number={11},
pages={1389-1397},
abstract={We analyze frame rates in low bit rate video coding and show that an optimal frame rate can be theoretically obtained. In low bit rate video coding the frame rate is usually forced to be decreased for reducing the total amount of coded information. The choice of frame rate, however, has a great effect on the picture quality in a trade-off relation between coded picture quality and motion smoothness. It is known from experience that in order to achieve an optimum balance between these two factors, a frame rate has to be selected which is appropriate for the coding scheme, property of the video sequences and coding bit rate. A theoretical analysis, however, on the existence of an optimal frame rate and how the optimal frame rate would be expressed has not been performed. In this paper, coding distortion measured by mean square error is analyzed by using video signal models such as a rate-distortion function for coded frames and inter-frame correlation coefficients for non-coded frames. Overall picture quality taking account of coded picture quality and motion smoothness simultaneously is expressed as a function of frame rate. This analysis shows that the optimum frame rate can be uniquely specified. The maximum frame rate is optimal when the coding bit rate is higher than a certain value for a given video scene, while a frame rate less than the maximum is optimal otherwise. The result of the theoretical analysis is compared with the results of computer simulation. In addition, the relation between this analysis and a subjective evaluation is described. From both comparisons this theoretical analysis can be justified as an effective scheme to indicate the optimal frame rate, and it shows the possibility of improving picture quality by selecting frame rate adaptively.},
keywords={},
doi={},
ISSN={},
month={November},}
Copy
TY - JOUR
TI - An Analysis of Optimal Frame Rate in Low Bit Rate Video Coding
T2 - IEICE TRANSACTIONS on Communications
SP - 1389
EP - 1397
AU - Yasuhiro TAKISHIMA
AU - Masahiro WADA
AU - Hitomi MURAKAMI
PY - 1993
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E76-B
IS - 11
JA - IEICE TRANSACTIONS on Communications
Y1 - November 1993
AB - We analyze frame rates in low bit rate video coding and show that an optimal frame rate can be theoretically obtained. In low bit rate video coding the frame rate is usually forced to be decreased for reducing the total amount of coded information. The choice of frame rate, however, has a great effect on the picture quality in a trade-off relation between coded picture quality and motion smoothness. It is known from experience that in order to achieve an optimum balance between these two factors, a frame rate has to be selected which is appropriate for the coding scheme, property of the video sequences and coding bit rate. A theoretical analysis, however, on the existence of an optimal frame rate and how the optimal frame rate would be expressed has not been performed. In this paper, coding distortion measured by mean square error is analyzed by using video signal models such as a rate-distortion function for coded frames and inter-frame correlation coefficients for non-coded frames. Overall picture quality taking account of coded picture quality and motion smoothness simultaneously is expressed as a function of frame rate. This analysis shows that the optimum frame rate can be uniquely specified. The maximum frame rate is optimal when the coding bit rate is higher than a certain value for a given video scene, while a frame rate less than the maximum is optimal otherwise. The result of the theoretical analysis is compared with the results of computer simulation. In addition, the relation between this analysis and a subjective evaluation is described. From both comparisons this theoretical analysis can be justified as an effective scheme to indicate the optimal frame rate, and it shows the possibility of improving picture quality by selecting frame rate adaptively.
ER -