We propose two multipriority reservation protocols for wavelength division multiplexing (WDM) networks. The network architecture is a single-hop with control channel-based passive star topology. Each station is equipped with two pairs of laser and filter. One pair of laser and filter is always tuned to wavelength λ0 for control and the other pair of laser and filter can be tuned to any of data wavelengths, λ1, λ2, ..., λN. According to the access methods of the control channel, one protocol is called slotted ALOHA-based protocol and the other protocol is called TDM-based protocol. The two protocols have the following properties. First, each of them has its own priority control scheme which easily accommodates multipriority traffics. Second, they can be employed in the network with limited channels, i.e. the number of stations in the system is not restricted by the number of data channels. Third, they are conflict-free protocols. By using a reservation scheme and a distributed arbitration algorithm, channel collision and destination conflict can be avoided. For the performance point of view, the TDM-based protocol gives an optimal solution for the priority control. However it is less scalable than the slotted ALOHA-based protocol. The slotted ALOHA-based protocol also performs good priority control even though it is not an optimal solution. We analyze their performances using a discrete time Markov model and verify the results by simulation.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Hyoung Soo KIM, Byung-Cheol SHIN, "Performance Evaluation of Multipriority Reservation Protocols for Single-Hop WDM Networks" in IEICE TRANSACTIONS on Communications,
vol. E80-B, no. 3, pp. 456-465, March 1997, doi: .
Abstract: We propose two multipriority reservation protocols for wavelength division multiplexing (WDM) networks. The network architecture is a single-hop with control channel-based passive star topology. Each station is equipped with two pairs of laser and filter. One pair of laser and filter is always tuned to wavelength λ0 for control and the other pair of laser and filter can be tuned to any of data wavelengths, λ1, λ2, ..., λN. According to the access methods of the control channel, one protocol is called slotted ALOHA-based protocol and the other protocol is called TDM-based protocol. The two protocols have the following properties. First, each of them has its own priority control scheme which easily accommodates multipriority traffics. Second, they can be employed in the network with limited channels, i.e. the number of stations in the system is not restricted by the number of data channels. Third, they are conflict-free protocols. By using a reservation scheme and a distributed arbitration algorithm, channel collision and destination conflict can be avoided. For the performance point of view, the TDM-based protocol gives an optimal solution for the priority control. However it is less scalable than the slotted ALOHA-based protocol. The slotted ALOHA-based protocol also performs good priority control even though it is not an optimal solution. We analyze their performances using a discrete time Markov model and verify the results by simulation.
URL: https://globals.ieice.org/en_transactions/communications/10.1587/e80-b_3_456/_p
Copy
@ARTICLE{e80-b_3_456,
author={Hyoung Soo KIM, Byung-Cheol SHIN, },
journal={IEICE TRANSACTIONS on Communications},
title={Performance Evaluation of Multipriority Reservation Protocols for Single-Hop WDM Networks},
year={1997},
volume={E80-B},
number={3},
pages={456-465},
abstract={We propose two multipriority reservation protocols for wavelength division multiplexing (WDM) networks. The network architecture is a single-hop with control channel-based passive star topology. Each station is equipped with two pairs of laser and filter. One pair of laser and filter is always tuned to wavelength λ0 for control and the other pair of laser and filter can be tuned to any of data wavelengths, λ1, λ2, ..., λN. According to the access methods of the control channel, one protocol is called slotted ALOHA-based protocol and the other protocol is called TDM-based protocol. The two protocols have the following properties. First, each of them has its own priority control scheme which easily accommodates multipriority traffics. Second, they can be employed in the network with limited channels, i.e. the number of stations in the system is not restricted by the number of data channels. Third, they are conflict-free protocols. By using a reservation scheme and a distributed arbitration algorithm, channel collision and destination conflict can be avoided. For the performance point of view, the TDM-based protocol gives an optimal solution for the priority control. However it is less scalable than the slotted ALOHA-based protocol. The slotted ALOHA-based protocol also performs good priority control even though it is not an optimal solution. We analyze their performances using a discrete time Markov model and verify the results by simulation.},
keywords={},
doi={},
ISSN={},
month={March},}
Copy
TY - JOUR
TI - Performance Evaluation of Multipriority Reservation Protocols for Single-Hop WDM Networks
T2 - IEICE TRANSACTIONS on Communications
SP - 456
EP - 465
AU - Hyoung Soo KIM
AU - Byung-Cheol SHIN
PY - 1997
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E80-B
IS - 3
JA - IEICE TRANSACTIONS on Communications
Y1 - March 1997
AB - We propose two multipriority reservation protocols for wavelength division multiplexing (WDM) networks. The network architecture is a single-hop with control channel-based passive star topology. Each station is equipped with two pairs of laser and filter. One pair of laser and filter is always tuned to wavelength λ0 for control and the other pair of laser and filter can be tuned to any of data wavelengths, λ1, λ2, ..., λN. According to the access methods of the control channel, one protocol is called slotted ALOHA-based protocol and the other protocol is called TDM-based protocol. The two protocols have the following properties. First, each of them has its own priority control scheme which easily accommodates multipriority traffics. Second, they can be employed in the network with limited channels, i.e. the number of stations in the system is not restricted by the number of data channels. Third, they are conflict-free protocols. By using a reservation scheme and a distributed arbitration algorithm, channel collision and destination conflict can be avoided. For the performance point of view, the TDM-based protocol gives an optimal solution for the priority control. However it is less scalable than the slotted ALOHA-based protocol. The slotted ALOHA-based protocol also performs good priority control even though it is not an optimal solution. We analyze their performances using a discrete time Markov model and verify the results by simulation.
ER -