This paper studies the routing algorithms for multi-destination connections where each destination may require different amount of data streams. This asymmetric feature can arise mostly in a large and/or heterogeneous network environment. There are mainly two reasons for this. One is that terminal equipments may have different capabilities. The other is that users may have various interests in the same set of information. We first define the asymmetric multicast problem and describe an original routing method for this type of multicast. The method is then employed in the presented routing algorithms, which can be run in multi-cluster environment. The multi-cluster architecture is considered to be effective for running routing in the networks, where a variety of operating methods might be applied in different clusters but global network performance is required. Our algorithms are designed based on some classical Steiner tree heuristics. The basic goal of our algorithms is to make routing decisions for the asymmetric multicast connections with minimum-cost purpose. In addition, we also consider delay constraint requirements in the multicast connections and propose correspondent algorithms. We compare the performance between SPT (Shortest Path Tree)-based algorithms and the presented algorithms by simulations. We show that performance difference exists among the different types of the algorithms.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yibo ZHANG, Shoichiro ASANO, "Routing Algorithms for Asymmetric Multi-Destination Connections in Multicluster Networks" in IEICE TRANSACTIONS on Communications,
vol. E81-B, no. 8, pp. 1582-1589, August 1998, doi: .
Abstract: This paper studies the routing algorithms for multi-destination connections where each destination may require different amount of data streams. This asymmetric feature can arise mostly in a large and/or heterogeneous network environment. There are mainly two reasons for this. One is that terminal equipments may have different capabilities. The other is that users may have various interests in the same set of information. We first define the asymmetric multicast problem and describe an original routing method for this type of multicast. The method is then employed in the presented routing algorithms, which can be run in multi-cluster environment. The multi-cluster architecture is considered to be effective for running routing in the networks, where a variety of operating methods might be applied in different clusters but global network performance is required. Our algorithms are designed based on some classical Steiner tree heuristics. The basic goal of our algorithms is to make routing decisions for the asymmetric multicast connections with minimum-cost purpose. In addition, we also consider delay constraint requirements in the multicast connections and propose correspondent algorithms. We compare the performance between SPT (Shortest Path Tree)-based algorithms and the presented algorithms by simulations. We show that performance difference exists among the different types of the algorithms.
URL: https://globals.ieice.org/en_transactions/communications/10.1587/e81-b_8_1582/_p
Copy
@ARTICLE{e81-b_8_1582,
author={Yibo ZHANG, Shoichiro ASANO, },
journal={IEICE TRANSACTIONS on Communications},
title={Routing Algorithms for Asymmetric Multi-Destination Connections in Multicluster Networks},
year={1998},
volume={E81-B},
number={8},
pages={1582-1589},
abstract={This paper studies the routing algorithms for multi-destination connections where each destination may require different amount of data streams. This asymmetric feature can arise mostly in a large and/or heterogeneous network environment. There are mainly two reasons for this. One is that terminal equipments may have different capabilities. The other is that users may have various interests in the same set of information. We first define the asymmetric multicast problem and describe an original routing method for this type of multicast. The method is then employed in the presented routing algorithms, which can be run in multi-cluster environment. The multi-cluster architecture is considered to be effective for running routing in the networks, where a variety of operating methods might be applied in different clusters but global network performance is required. Our algorithms are designed based on some classical Steiner tree heuristics. The basic goal of our algorithms is to make routing decisions for the asymmetric multicast connections with minimum-cost purpose. In addition, we also consider delay constraint requirements in the multicast connections and propose correspondent algorithms. We compare the performance between SPT (Shortest Path Tree)-based algorithms and the presented algorithms by simulations. We show that performance difference exists among the different types of the algorithms.},
keywords={},
doi={},
ISSN={},
month={August},}
Copy
TY - JOUR
TI - Routing Algorithms for Asymmetric Multi-Destination Connections in Multicluster Networks
T2 - IEICE TRANSACTIONS on Communications
SP - 1582
EP - 1589
AU - Yibo ZHANG
AU - Shoichiro ASANO
PY - 1998
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E81-B
IS - 8
JA - IEICE TRANSACTIONS on Communications
Y1 - August 1998
AB - This paper studies the routing algorithms for multi-destination connections where each destination may require different amount of data streams. This asymmetric feature can arise mostly in a large and/or heterogeneous network environment. There are mainly two reasons for this. One is that terminal equipments may have different capabilities. The other is that users may have various interests in the same set of information. We first define the asymmetric multicast problem and describe an original routing method for this type of multicast. The method is then employed in the presented routing algorithms, which can be run in multi-cluster environment. The multi-cluster architecture is considered to be effective for running routing in the networks, where a variety of operating methods might be applied in different clusters but global network performance is required. Our algorithms are designed based on some classical Steiner tree heuristics. The basic goal of our algorithms is to make routing decisions for the asymmetric multicast connections with minimum-cost purpose. In addition, we also consider delay constraint requirements in the multicast connections and propose correspondent algorithms. We compare the performance between SPT (Shortest Path Tree)-based algorithms and the presented algorithms by simulations. We show that performance difference exists among the different types of the algorithms.
ER -