A great deal of effort has been spent to develop strategies for allocation of resources in DS-CDMA systems in order to mitigate effects of interference between users. Here, the choice of spreading sequences and appropriate power allocation play a crucial role. When developing such strategies, CDMA system designers need to ensure that each user meets its quality-of-service requirement expressed in terms of the signal-to-interference+noise ratio. We say that a set of users is admissible in a CDMA system if one can assign sequences to the users and control their power so that all users meet their quality-of-service requirements. In [1], the problem of admissibility in a synchronous CDMA channel was solved. However, since the simplistic setting of perfect symbol synchronism rarely holds in practice, there is a strong need for investigating asynchronous CDMA channels. In this paper, we consider a K-user asynchronous CDMA channel with processing gain N and identical performance requirements for all users assuming chip synchronism. We solve the problem of admissibility of the users in such a channel if N
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Holger BOCHE, Slawomir STANCZAK, "Optimal Allocation of Resources in an Asynchronous CDMA Channel with Identical SINR Requirements for All Users" in IEICE TRANSACTIONS on Communications,
vol. E86-B, no. 1, pp. 397-405, January 2003, doi: .
Abstract: A great deal of effort has been spent to develop strategies for allocation of resources in DS-CDMA systems in order to mitigate effects of interference between users. Here, the choice of spreading sequences and appropriate power allocation play a crucial role. When developing such strategies, CDMA system designers need to ensure that each user meets its quality-of-service requirement expressed in terms of the signal-to-interference+noise ratio. We say that a set of users is admissible in a CDMA system if one can assign sequences to the users and control their power so that all users meet their quality-of-service requirements. In [1], the problem of admissibility in a synchronous CDMA channel was solved. However, since the simplistic setting of perfect symbol synchronism rarely holds in practice, there is a strong need for investigating asynchronous CDMA channels. In this paper, we consider a K-user asynchronous CDMA channel with processing gain N and identical performance requirements for all users assuming chip synchronism. We solve the problem of admissibility of the users in such a channel if N
URL: https://globals.ieice.org/en_transactions/communications/10.1587/e86-b_1_397/_p
Copy
@ARTICLE{e86-b_1_397,
author={Holger BOCHE, Slawomir STANCZAK, },
journal={IEICE TRANSACTIONS on Communications},
title={Optimal Allocation of Resources in an Asynchronous CDMA Channel with Identical SINR Requirements for All Users},
year={2003},
volume={E86-B},
number={1},
pages={397-405},
abstract={A great deal of effort has been spent to develop strategies for allocation of resources in DS-CDMA systems in order to mitigate effects of interference between users. Here, the choice of spreading sequences and appropriate power allocation play a crucial role. When developing such strategies, CDMA system designers need to ensure that each user meets its quality-of-service requirement expressed in terms of the signal-to-interference+noise ratio. We say that a set of users is admissible in a CDMA system if one can assign sequences to the users and control their power so that all users meet their quality-of-service requirements. In [1], the problem of admissibility in a synchronous CDMA channel was solved. However, since the simplistic setting of perfect symbol synchronism rarely holds in practice, there is a strong need for investigating asynchronous CDMA channels. In this paper, we consider a K-user asynchronous CDMA channel with processing gain N and identical performance requirements for all users assuming chip synchronism. We solve the problem of admissibility of the users in such a channel if N
keywords={},
doi={},
ISSN={},
month={January},}
Copy
TY - JOUR
TI - Optimal Allocation of Resources in an Asynchronous CDMA Channel with Identical SINR Requirements for All Users
T2 - IEICE TRANSACTIONS on Communications
SP - 397
EP - 405
AU - Holger BOCHE
AU - Slawomir STANCZAK
PY - 2003
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E86-B
IS - 1
JA - IEICE TRANSACTIONS on Communications
Y1 - January 2003
AB - A great deal of effort has been spent to develop strategies for allocation of resources in DS-CDMA systems in order to mitigate effects of interference between users. Here, the choice of spreading sequences and appropriate power allocation play a crucial role. When developing such strategies, CDMA system designers need to ensure that each user meets its quality-of-service requirement expressed in terms of the signal-to-interference+noise ratio. We say that a set of users is admissible in a CDMA system if one can assign sequences to the users and control their power so that all users meet their quality-of-service requirements. In [1], the problem of admissibility in a synchronous CDMA channel was solved. However, since the simplistic setting of perfect symbol synchronism rarely holds in practice, there is a strong need for investigating asynchronous CDMA channels. In this paper, we consider a K-user asynchronous CDMA channel with processing gain N and identical performance requirements for all users assuming chip synchronism. We solve the problem of admissibility of the users in such a channel if N
ER -