This paper introduces an efficient affine projection algorithm (APA) using iterative hyperplane projection. The inherent effectiveness against the rank deficient problem has led APA to be the preferred algorithm to be employed for various applications over other variety of fast converging adaptation algorithms. However, the amount of complexity of the conventional APA could not be negligible because of the accomplishment of sample matrix inversion (SMI). Another issue is that the "shifting invariance property," which is typically exploited for single channel case, does not hold ground for space-time decision-directed equalizer (STDE) application deployed in single-input-multi-output (SIMO) systems. Therefore, fast adaptation schemes, such as fast traversal filter based APA (FTF-APA), becomes impossible to utilize. The motivation of this paper deliberates on finding an effective algorithm on the basis of APA, which yields low complexity while sustaining fast convergence as well as excellent tracking ability. The performance of the proposed method is evaluated under wireless SIMO channel in respect to bit error rate (BER) behavior and computational complexity, and upon completion, the validity is confirmed. The performance of the proposed method is evaluated under wireless SIMO channel in respect to bit error rate (BER) behavior and computational complexity, and upon completion, the validity is confirmed.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Won-Cheol LEE, Chul RYU, Jin-Ho PARK, "An Iterative Hyperplane Projection Based Affine Projection Algorithm for Fast Converging Space-Time Adaptive Decision-Directed Equalizer" in IEICE TRANSACTIONS on Communications,
vol. E87-B, no. 12, pp. 3673-3681, December 2004, doi: .
Abstract: This paper introduces an efficient affine projection algorithm (APA) using iterative hyperplane projection. The inherent effectiveness against the rank deficient problem has led APA to be the preferred algorithm to be employed for various applications over other variety of fast converging adaptation algorithms. However, the amount of complexity of the conventional APA could not be negligible because of the accomplishment of sample matrix inversion (SMI). Another issue is that the "shifting invariance property," which is typically exploited for single channel case, does not hold ground for space-time decision-directed equalizer (STDE) application deployed in single-input-multi-output (SIMO) systems. Therefore, fast adaptation schemes, such as fast traversal filter based APA (FTF-APA), becomes impossible to utilize. The motivation of this paper deliberates on finding an effective algorithm on the basis of APA, which yields low complexity while sustaining fast convergence as well as excellent tracking ability. The performance of the proposed method is evaluated under wireless SIMO channel in respect to bit error rate (BER) behavior and computational complexity, and upon completion, the validity is confirmed. The performance of the proposed method is evaluated under wireless SIMO channel in respect to bit error rate (BER) behavior and computational complexity, and upon completion, the validity is confirmed.
URL: https://globals.ieice.org/en_transactions/communications/10.1587/e87-b_12_3673/_p
Copy
@ARTICLE{e87-b_12_3673,
author={Won-Cheol LEE, Chul RYU, Jin-Ho PARK, },
journal={IEICE TRANSACTIONS on Communications},
title={An Iterative Hyperplane Projection Based Affine Projection Algorithm for Fast Converging Space-Time Adaptive Decision-Directed Equalizer},
year={2004},
volume={E87-B},
number={12},
pages={3673-3681},
abstract={This paper introduces an efficient affine projection algorithm (APA) using iterative hyperplane projection. The inherent effectiveness against the rank deficient problem has led APA to be the preferred algorithm to be employed for various applications over other variety of fast converging adaptation algorithms. However, the amount of complexity of the conventional APA could not be negligible because of the accomplishment of sample matrix inversion (SMI). Another issue is that the "shifting invariance property," which is typically exploited for single channel case, does not hold ground for space-time decision-directed equalizer (STDE) application deployed in single-input-multi-output (SIMO) systems. Therefore, fast adaptation schemes, such as fast traversal filter based APA (FTF-APA), becomes impossible to utilize. The motivation of this paper deliberates on finding an effective algorithm on the basis of APA, which yields low complexity while sustaining fast convergence as well as excellent tracking ability. The performance of the proposed method is evaluated under wireless SIMO channel in respect to bit error rate (BER) behavior and computational complexity, and upon completion, the validity is confirmed. The performance of the proposed method is evaluated under wireless SIMO channel in respect to bit error rate (BER) behavior and computational complexity, and upon completion, the validity is confirmed.},
keywords={},
doi={},
ISSN={},
month={December},}
Copy
TY - JOUR
TI - An Iterative Hyperplane Projection Based Affine Projection Algorithm for Fast Converging Space-Time Adaptive Decision-Directed Equalizer
T2 - IEICE TRANSACTIONS on Communications
SP - 3673
EP - 3681
AU - Won-Cheol LEE
AU - Chul RYU
AU - Jin-Ho PARK
PY - 2004
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E87-B
IS - 12
JA - IEICE TRANSACTIONS on Communications
Y1 - December 2004
AB - This paper introduces an efficient affine projection algorithm (APA) using iterative hyperplane projection. The inherent effectiveness against the rank deficient problem has led APA to be the preferred algorithm to be employed for various applications over other variety of fast converging adaptation algorithms. However, the amount of complexity of the conventional APA could not be negligible because of the accomplishment of sample matrix inversion (SMI). Another issue is that the "shifting invariance property," which is typically exploited for single channel case, does not hold ground for space-time decision-directed equalizer (STDE) application deployed in single-input-multi-output (SIMO) systems. Therefore, fast adaptation schemes, such as fast traversal filter based APA (FTF-APA), becomes impossible to utilize. The motivation of this paper deliberates on finding an effective algorithm on the basis of APA, which yields low complexity while sustaining fast convergence as well as excellent tracking ability. The performance of the proposed method is evaluated under wireless SIMO channel in respect to bit error rate (BER) behavior and computational complexity, and upon completion, the validity is confirmed. The performance of the proposed method is evaluated under wireless SIMO channel in respect to bit error rate (BER) behavior and computational complexity, and upon completion, the validity is confirmed.
ER -