This paper proposes an inter-symbol interference (ISI) suppression scheme using only the even-numbered sub-carriers for the fixed-rate OFDM systems with the 2-dimensional modulation. The proposed scheme is based on the principle that the first half of the waveform in the time domain is the same as the second half when an OFDM symbol is composed of only the even-numbered sub-carriers. The feature of the proposed scheme is that, in the case of the maximum multipath delay beyond the duration of the guard interval, the OFDM symbol with only the even-numbered sub-carriers is transmitted in order to generate the extended virtual guard interval and that the high-level modulation with the sub-carrier power enhancement is applied to achieve the constant data rate. In addition, at the receiver, only the second half of the OFDM symbol is used for the FFT processing to avoid the ISI. Moreover, the condition of the maximum multipath delay is notified to the transmitter by using the feedback channel. Numerical results given by computer simulation showed that the proposed scheme provides far better bit error rate (BER) performance than the traditional OFDM transmission using all sub-carriers under the multipath delay beyond the duration of the guard interval.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Fumiaki MAEHARA, Fumihito SASAMORI, Fumio TAKAHATA, "Inter-Symbol Interference Suppression Scheme Using Even-Numbered Sub-Carriers for Fixed-Rate OFDM Systems" in IEICE TRANSACTIONS on Communications,
vol. E87-B, no. 4, pp. 866-872, April 2004, doi: .
Abstract: This paper proposes an inter-symbol interference (ISI) suppression scheme using only the even-numbered sub-carriers for the fixed-rate OFDM systems with the 2-dimensional modulation. The proposed scheme is based on the principle that the first half of the waveform in the time domain is the same as the second half when an OFDM symbol is composed of only the even-numbered sub-carriers. The feature of the proposed scheme is that, in the case of the maximum multipath delay beyond the duration of the guard interval, the OFDM symbol with only the even-numbered sub-carriers is transmitted in order to generate the extended virtual guard interval and that the high-level modulation with the sub-carrier power enhancement is applied to achieve the constant data rate. In addition, at the receiver, only the second half of the OFDM symbol is used for the FFT processing to avoid the ISI. Moreover, the condition of the maximum multipath delay is notified to the transmitter by using the feedback channel. Numerical results given by computer simulation showed that the proposed scheme provides far better bit error rate (BER) performance than the traditional OFDM transmission using all sub-carriers under the multipath delay beyond the duration of the guard interval.
URL: https://globals.ieice.org/en_transactions/communications/10.1587/e87-b_4_866/_p
Copy
@ARTICLE{e87-b_4_866,
author={Fumiaki MAEHARA, Fumihito SASAMORI, Fumio TAKAHATA, },
journal={IEICE TRANSACTIONS on Communications},
title={Inter-Symbol Interference Suppression Scheme Using Even-Numbered Sub-Carriers for Fixed-Rate OFDM Systems},
year={2004},
volume={E87-B},
number={4},
pages={866-872},
abstract={This paper proposes an inter-symbol interference (ISI) suppression scheme using only the even-numbered sub-carriers for the fixed-rate OFDM systems with the 2-dimensional modulation. The proposed scheme is based on the principle that the first half of the waveform in the time domain is the same as the second half when an OFDM symbol is composed of only the even-numbered sub-carriers. The feature of the proposed scheme is that, in the case of the maximum multipath delay beyond the duration of the guard interval, the OFDM symbol with only the even-numbered sub-carriers is transmitted in order to generate the extended virtual guard interval and that the high-level modulation with the sub-carrier power enhancement is applied to achieve the constant data rate. In addition, at the receiver, only the second half of the OFDM symbol is used for the FFT processing to avoid the ISI. Moreover, the condition of the maximum multipath delay is notified to the transmitter by using the feedback channel. Numerical results given by computer simulation showed that the proposed scheme provides far better bit error rate (BER) performance than the traditional OFDM transmission using all sub-carriers under the multipath delay beyond the duration of the guard interval.},
keywords={},
doi={},
ISSN={},
month={April},}
Copy
TY - JOUR
TI - Inter-Symbol Interference Suppression Scheme Using Even-Numbered Sub-Carriers for Fixed-Rate OFDM Systems
T2 - IEICE TRANSACTIONS on Communications
SP - 866
EP - 872
AU - Fumiaki MAEHARA
AU - Fumihito SASAMORI
AU - Fumio TAKAHATA
PY - 2004
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E87-B
IS - 4
JA - IEICE TRANSACTIONS on Communications
Y1 - April 2004
AB - This paper proposes an inter-symbol interference (ISI) suppression scheme using only the even-numbered sub-carriers for the fixed-rate OFDM systems with the 2-dimensional modulation. The proposed scheme is based on the principle that the first half of the waveform in the time domain is the same as the second half when an OFDM symbol is composed of only the even-numbered sub-carriers. The feature of the proposed scheme is that, in the case of the maximum multipath delay beyond the duration of the guard interval, the OFDM symbol with only the even-numbered sub-carriers is transmitted in order to generate the extended virtual guard interval and that the high-level modulation with the sub-carrier power enhancement is applied to achieve the constant data rate. In addition, at the receiver, only the second half of the OFDM symbol is used for the FFT processing to avoid the ISI. Moreover, the condition of the maximum multipath delay is notified to the transmitter by using the feedback channel. Numerical results given by computer simulation showed that the proposed scheme provides far better bit error rate (BER) performance than the traditional OFDM transmission using all sub-carriers under the multipath delay beyond the duration of the guard interval.
ER -