Full Text Views
130
A link adaptation scheme is devised for vector-perturbation (VP) zero-forcing beamforming (ZFBF) MIMO precoding and a link-adaptable VP-ZFBF precoder is applied to multi-point three-dimensional (3D) beamformers to be used in mmWave-band wireless access systems. Channel coding schemes used in current systems, e.g., turbo codes, possess systematic code structures. The VP gain can thus be predicted by searching for perturbation vectors for the symbol vectors mapped from information bits. On the basis of this principle, we constructed an efficient iterative modulation-and-coding-set (MCS) selection procedure for VP-ZFBF precoding. Simulation results demonstrate that our proposed scheme suitably passed on the VP gain to the selection of an appropriate higher-rate MCS index and thus achieved high throughputs by incorporating with multi-point 3D-beamformers.
Masaaki FUJII
Samsung R&D Institute Japan
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Masaaki FUJII, "Link-Adaptable Vector-Perturbation ZFBF Precoder for Multi-Point 3D-Beamformers" in IEICE TRANSACTIONS on Communications,
vol. E99-B, no. 8, pp. 1648-1654, August 2016, doi: 10.1587/transcom.2015CCP0001.
Abstract: A link adaptation scheme is devised for vector-perturbation (VP) zero-forcing beamforming (ZFBF) MIMO precoding and a link-adaptable VP-ZFBF precoder is applied to multi-point three-dimensional (3D) beamformers to be used in mmWave-band wireless access systems. Channel coding schemes used in current systems, e.g., turbo codes, possess systematic code structures. The VP gain can thus be predicted by searching for perturbation vectors for the symbol vectors mapped from information bits. On the basis of this principle, we constructed an efficient iterative modulation-and-coding-set (MCS) selection procedure for VP-ZFBF precoding. Simulation results demonstrate that our proposed scheme suitably passed on the VP gain to the selection of an appropriate higher-rate MCS index and thus achieved high throughputs by incorporating with multi-point 3D-beamformers.
URL: https://globals.ieice.org/en_transactions/communications/10.1587/transcom.2015CCP0001/_p
Copy
@ARTICLE{e99-b_8_1648,
author={Masaaki FUJII, },
journal={IEICE TRANSACTIONS on Communications},
title={Link-Adaptable Vector-Perturbation ZFBF Precoder for Multi-Point 3D-Beamformers},
year={2016},
volume={E99-B},
number={8},
pages={1648-1654},
abstract={A link adaptation scheme is devised for vector-perturbation (VP) zero-forcing beamforming (ZFBF) MIMO precoding and a link-adaptable VP-ZFBF precoder is applied to multi-point three-dimensional (3D) beamformers to be used in mmWave-band wireless access systems. Channel coding schemes used in current systems, e.g., turbo codes, possess systematic code structures. The VP gain can thus be predicted by searching for perturbation vectors for the symbol vectors mapped from information bits. On the basis of this principle, we constructed an efficient iterative modulation-and-coding-set (MCS) selection procedure for VP-ZFBF precoding. Simulation results demonstrate that our proposed scheme suitably passed on the VP gain to the selection of an appropriate higher-rate MCS index and thus achieved high throughputs by incorporating with multi-point 3D-beamformers.},
keywords={},
doi={10.1587/transcom.2015CCP0001},
ISSN={1745-1345},
month={August},}
Copy
TY - JOUR
TI - Link-Adaptable Vector-Perturbation ZFBF Precoder for Multi-Point 3D-Beamformers
T2 - IEICE TRANSACTIONS on Communications
SP - 1648
EP - 1654
AU - Masaaki FUJII
PY - 2016
DO - 10.1587/transcom.2015CCP0001
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E99-B
IS - 8
JA - IEICE TRANSACTIONS on Communications
Y1 - August 2016
AB - A link adaptation scheme is devised for vector-perturbation (VP) zero-forcing beamforming (ZFBF) MIMO precoding and a link-adaptable VP-ZFBF precoder is applied to multi-point three-dimensional (3D) beamformers to be used in mmWave-band wireless access systems. Channel coding schemes used in current systems, e.g., turbo codes, possess systematic code structures. The VP gain can thus be predicted by searching for perturbation vectors for the symbol vectors mapped from information bits. On the basis of this principle, we constructed an efficient iterative modulation-and-coding-set (MCS) selection procedure for VP-ZFBF precoding. Simulation results demonstrate that our proposed scheme suitably passed on the VP gain to the selection of an appropriate higher-rate MCS index and thus achieved high throughputs by incorporating with multi-point 3D-beamformers.
ER -