This study investigates a real-time joint channel and hyperparameter estimation method for orthogonal frequency division multiplexing mobile communications. The channel frequency response of the pilot subcarrier and its fixed hyperparameters (such as channel statistics) are estimated using a Liu and West filter (LWF), which is based on the state-space model and sequential Monte Carlo method. For the first time, to our knowledge, we demonstrate that the conventional LWF biases the hyperparameter due to a poor estimate of the likelihood caused by overfitting in noisy environments. Moreover, this problem cannot be solved by conventional smoothing techniques. For this, we modify the conventional LWF and regularize the likelihood using a Kalman smoother. The effectiveness of the proposed method is confirmed via numerical analysis. When both of the Doppler frequency and delay spread hyperparameters are unknown, the conventional LWF significantly degrades the performance, sometimes below that of least squares estimation. By avoiding the hyperparameter estimation failure, our method outperforms the conventional approach and achieves good performance near the lower bound. The coding gain in our proposed method is at most 10 dB higher than that in the conventional LWF. Thus, the proposed method improves the channel and hyperparameter estimation accuracy. Derived from mathematical principles, our proposal is applicable not only to wireless technology but also to a broad range of related areas such as machine learning and econometrics.
Junichiro HAGIWARA
NTT DOCOMO, INC.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Junichiro HAGIWARA, "Real-Time Joint Channel and Hyperparameter Estimation Using Sequential Monte Carlo Methods for OFDM Mobile Communications" in IEICE TRANSACTIONS on Communications,
vol. E99-B, no. 8, pp. 1655-1668, August 2016, doi: 10.1587/transcom.2015CCP0009.
Abstract: This study investigates a real-time joint channel and hyperparameter estimation method for orthogonal frequency division multiplexing mobile communications. The channel frequency response of the pilot subcarrier and its fixed hyperparameters (such as channel statistics) are estimated using a Liu and West filter (LWF), which is based on the state-space model and sequential Monte Carlo method. For the first time, to our knowledge, we demonstrate that the conventional LWF biases the hyperparameter due to a poor estimate of the likelihood caused by overfitting in noisy environments. Moreover, this problem cannot be solved by conventional smoothing techniques. For this, we modify the conventional LWF and regularize the likelihood using a Kalman smoother. The effectiveness of the proposed method is confirmed via numerical analysis. When both of the Doppler frequency and delay spread hyperparameters are unknown, the conventional LWF significantly degrades the performance, sometimes below that of least squares estimation. By avoiding the hyperparameter estimation failure, our method outperforms the conventional approach and achieves good performance near the lower bound. The coding gain in our proposed method is at most 10 dB higher than that in the conventional LWF. Thus, the proposed method improves the channel and hyperparameter estimation accuracy. Derived from mathematical principles, our proposal is applicable not only to wireless technology but also to a broad range of related areas such as machine learning and econometrics.
URL: https://globals.ieice.org/en_transactions/communications/10.1587/transcom.2015CCP0009/_p
Copy
@ARTICLE{e99-b_8_1655,
author={Junichiro HAGIWARA, },
journal={IEICE TRANSACTIONS on Communications},
title={Real-Time Joint Channel and Hyperparameter Estimation Using Sequential Monte Carlo Methods for OFDM Mobile Communications},
year={2016},
volume={E99-B},
number={8},
pages={1655-1668},
abstract={This study investigates a real-time joint channel and hyperparameter estimation method for orthogonal frequency division multiplexing mobile communications. The channel frequency response of the pilot subcarrier and its fixed hyperparameters (such as channel statistics) are estimated using a Liu and West filter (LWF), which is based on the state-space model and sequential Monte Carlo method. For the first time, to our knowledge, we demonstrate that the conventional LWF biases the hyperparameter due to a poor estimate of the likelihood caused by overfitting in noisy environments. Moreover, this problem cannot be solved by conventional smoothing techniques. For this, we modify the conventional LWF and regularize the likelihood using a Kalman smoother. The effectiveness of the proposed method is confirmed via numerical analysis. When both of the Doppler frequency and delay spread hyperparameters are unknown, the conventional LWF significantly degrades the performance, sometimes below that of least squares estimation. By avoiding the hyperparameter estimation failure, our method outperforms the conventional approach and achieves good performance near the lower bound. The coding gain in our proposed method is at most 10 dB higher than that in the conventional LWF. Thus, the proposed method improves the channel and hyperparameter estimation accuracy. Derived from mathematical principles, our proposal is applicable not only to wireless technology but also to a broad range of related areas such as machine learning and econometrics.},
keywords={},
doi={10.1587/transcom.2015CCP0009},
ISSN={1745-1345},
month={August},}
Copy
TY - JOUR
TI - Real-Time Joint Channel and Hyperparameter Estimation Using Sequential Monte Carlo Methods for OFDM Mobile Communications
T2 - IEICE TRANSACTIONS on Communications
SP - 1655
EP - 1668
AU - Junichiro HAGIWARA
PY - 2016
DO - 10.1587/transcom.2015CCP0009
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E99-B
IS - 8
JA - IEICE TRANSACTIONS on Communications
Y1 - August 2016
AB - This study investigates a real-time joint channel and hyperparameter estimation method for orthogonal frequency division multiplexing mobile communications. The channel frequency response of the pilot subcarrier and its fixed hyperparameters (such as channel statistics) are estimated using a Liu and West filter (LWF), which is based on the state-space model and sequential Monte Carlo method. For the first time, to our knowledge, we demonstrate that the conventional LWF biases the hyperparameter due to a poor estimate of the likelihood caused by overfitting in noisy environments. Moreover, this problem cannot be solved by conventional smoothing techniques. For this, we modify the conventional LWF and regularize the likelihood using a Kalman smoother. The effectiveness of the proposed method is confirmed via numerical analysis. When both of the Doppler frequency and delay spread hyperparameters are unknown, the conventional LWF significantly degrades the performance, sometimes below that of least squares estimation. By avoiding the hyperparameter estimation failure, our method outperforms the conventional approach and achieves good performance near the lower bound. The coding gain in our proposed method is at most 10 dB higher than that in the conventional LWF. Thus, the proposed method improves the channel and hyperparameter estimation accuracy. Derived from mathematical principles, our proposal is applicable not only to wireless technology but also to a broad range of related areas such as machine learning and econometrics.
ER -