The rotating element electric field vector (REV) method is a classical measurement technique for phased array calibration. Compared with other calibration methods, it requires only power measurements. Thus, the REV method is more reliable for operating phased array calibration systems. However, since the phase of each element must be rotated from 0 to 2π, the conventional REV method requires a large number of measurements. Moreover, the power of composite electric field vector doesn't vary significantly because only a single element's phase is rotated. Thus, it can be easily degraded by the receiver noise. A simplified REV method combined with Hadamard group division is proposed in this paper. In the proposed method, only power measurements are required. All the array elements are divided into different groups according to the group matrix derived from the normalized Hadamard matrix. The phases of all the elements in the same group are rotated at the same time, and the composite electric field vector of this group is obtained by the simplified REV method. Hence, the relative electric fields of all elements can be obtained by a matrix equation. Compared with the conventional REV method, the proposed method can not only reduce the number of measurements but also improve the measurement accuracy under the particular range of signal to noise ratio(SNR) at the receiver, especially under low and moderate SNRs.
Tao XIE
National University of Defense Technology
Jiang ZHU
National University of Defense Technology
Jinjun LUO
National University of Defense Technology
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Tao XIE, Jiang ZHU, Jinjun LUO, "The Simplified REV Method Combined with Hadamard Group Division for Phased Array Calibration" in IEICE TRANSACTIONS on Communications,
vol. E101-B, no. 3, pp. 847-855, March 2018, doi: 10.1587/transcom.2017EBP3155.
Abstract: The rotating element electric field vector (REV) method is a classical measurement technique for phased array calibration. Compared with other calibration methods, it requires only power measurements. Thus, the REV method is more reliable for operating phased array calibration systems. However, since the phase of each element must be rotated from 0 to 2π, the conventional REV method requires a large number of measurements. Moreover, the power of composite electric field vector doesn't vary significantly because only a single element's phase is rotated. Thus, it can be easily degraded by the receiver noise. A simplified REV method combined with Hadamard group division is proposed in this paper. In the proposed method, only power measurements are required. All the array elements are divided into different groups according to the group matrix derived from the normalized Hadamard matrix. The phases of all the elements in the same group are rotated at the same time, and the composite electric field vector of this group is obtained by the simplified REV method. Hence, the relative electric fields of all elements can be obtained by a matrix equation. Compared with the conventional REV method, the proposed method can not only reduce the number of measurements but also improve the measurement accuracy under the particular range of signal to noise ratio(SNR) at the receiver, especially under low and moderate SNRs.
URL: https://globals.ieice.org/en_transactions/communications/10.1587/transcom.2017EBP3155/_p
Copy
@ARTICLE{e101-b_3_847,
author={Tao XIE, Jiang ZHU, Jinjun LUO, },
journal={IEICE TRANSACTIONS on Communications},
title={The Simplified REV Method Combined with Hadamard Group Division for Phased Array Calibration},
year={2018},
volume={E101-B},
number={3},
pages={847-855},
abstract={The rotating element electric field vector (REV) method is a classical measurement technique for phased array calibration. Compared with other calibration methods, it requires only power measurements. Thus, the REV method is more reliable for operating phased array calibration systems. However, since the phase of each element must be rotated from 0 to 2π, the conventional REV method requires a large number of measurements. Moreover, the power of composite electric field vector doesn't vary significantly because only a single element's phase is rotated. Thus, it can be easily degraded by the receiver noise. A simplified REV method combined with Hadamard group division is proposed in this paper. In the proposed method, only power measurements are required. All the array elements are divided into different groups according to the group matrix derived from the normalized Hadamard matrix. The phases of all the elements in the same group are rotated at the same time, and the composite electric field vector of this group is obtained by the simplified REV method. Hence, the relative electric fields of all elements can be obtained by a matrix equation. Compared with the conventional REV method, the proposed method can not only reduce the number of measurements but also improve the measurement accuracy under the particular range of signal to noise ratio(SNR) at the receiver, especially under low and moderate SNRs.},
keywords={},
doi={10.1587/transcom.2017EBP3155},
ISSN={1745-1345},
month={March},}
Copy
TY - JOUR
TI - The Simplified REV Method Combined with Hadamard Group Division for Phased Array Calibration
T2 - IEICE TRANSACTIONS on Communications
SP - 847
EP - 855
AU - Tao XIE
AU - Jiang ZHU
AU - Jinjun LUO
PY - 2018
DO - 10.1587/transcom.2017EBP3155
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E101-B
IS - 3
JA - IEICE TRANSACTIONS on Communications
Y1 - March 2018
AB - The rotating element electric field vector (REV) method is a classical measurement technique for phased array calibration. Compared with other calibration methods, it requires only power measurements. Thus, the REV method is more reliable for operating phased array calibration systems. However, since the phase of each element must be rotated from 0 to 2π, the conventional REV method requires a large number of measurements. Moreover, the power of composite electric field vector doesn't vary significantly because only a single element's phase is rotated. Thus, it can be easily degraded by the receiver noise. A simplified REV method combined with Hadamard group division is proposed in this paper. In the proposed method, only power measurements are required. All the array elements are divided into different groups according to the group matrix derived from the normalized Hadamard matrix. The phases of all the elements in the same group are rotated at the same time, and the composite electric field vector of this group is obtained by the simplified REV method. Hence, the relative electric fields of all elements can be obtained by a matrix equation. Compared with the conventional REV method, the proposed method can not only reduce the number of measurements but also improve the measurement accuracy under the particular range of signal to noise ratio(SNR) at the receiver, especially under low and moderate SNRs.
ER -