In this paper, we investigate the capacity performance of an in-band full-duplex (IBFD) amplify-and-forward two-way relay system under the effect of residual loop-back-interference (LBI). In a two-way IBFD relay system, two IBFD nodes exchange data with each other via an IBFD relay. Both two-way relaying and IBFD one-way relaying could double the spectrum efficiency theoretically. However, due to imperfect channel estimation, the performance of two-way relaying is degraded by self-interference at the receiver. Moreover, the performance of the IBFD relaying is deteriorated by LBI between the transmit antenna and the receive antenna of the node. Different from the IBFD one-way relay scenario, the IBFD two-way relay system will suffer from an extra level of LBI at the destination receiver. We derive accurate approximations of the average end-to-end capacities for both the IBFD and half-duplex modes. We evaluate the impact of the LBI and channel estimation errors on system performance. Monte Carlo simulations verify the validity of analytical results. It can be shown that with certain signal-to-noise ratio values and effective interference cancellation techniques, the IBFD transmission is preferable in terms of capacity. The IBFD two-way relaying is an attractive technique for practical applications.
Siye WANG
Beijing University of Posts and Telecommunications
Mingyao WANG
Beijing University of Posts and Telecommunications
Boyu JIA
Beijing University of Posts and Telecommunications
Yonghua LI
Beijing University of Posts and Telecommunications
Wenbo XU
Beijing University of Posts and Telecommunications
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Siye WANG, Mingyao WANG, Boyu JIA, Yonghua LI, Wenbo XU, "Capacity of Two-Way In-Band Full-Duplex Relaying with Imperfect Channel State Information" in IEICE TRANSACTIONS on Communications,
vol. E101-B, no. 4, pp. 1108-1115, April 2018, doi: 10.1587/transcom.2017EBP3266.
Abstract: In this paper, we investigate the capacity performance of an in-band full-duplex (IBFD) amplify-and-forward two-way relay system under the effect of residual loop-back-interference (LBI). In a two-way IBFD relay system, two IBFD nodes exchange data with each other via an IBFD relay. Both two-way relaying and IBFD one-way relaying could double the spectrum efficiency theoretically. However, due to imperfect channel estimation, the performance of two-way relaying is degraded by self-interference at the receiver. Moreover, the performance of the IBFD relaying is deteriorated by LBI between the transmit antenna and the receive antenna of the node. Different from the IBFD one-way relay scenario, the IBFD two-way relay system will suffer from an extra level of LBI at the destination receiver. We derive accurate approximations of the average end-to-end capacities for both the IBFD and half-duplex modes. We evaluate the impact of the LBI and channel estimation errors on system performance. Monte Carlo simulations verify the validity of analytical results. It can be shown that with certain signal-to-noise ratio values and effective interference cancellation techniques, the IBFD transmission is preferable in terms of capacity. The IBFD two-way relaying is an attractive technique for practical applications.
URL: https://globals.ieice.org/en_transactions/communications/10.1587/transcom.2017EBP3266/_p
Copy
@ARTICLE{e101-b_4_1108,
author={Siye WANG, Mingyao WANG, Boyu JIA, Yonghua LI, Wenbo XU, },
journal={IEICE TRANSACTIONS on Communications},
title={Capacity of Two-Way In-Band Full-Duplex Relaying with Imperfect Channel State Information},
year={2018},
volume={E101-B},
number={4},
pages={1108-1115},
abstract={In this paper, we investigate the capacity performance of an in-band full-duplex (IBFD) amplify-and-forward two-way relay system under the effect of residual loop-back-interference (LBI). In a two-way IBFD relay system, two IBFD nodes exchange data with each other via an IBFD relay. Both two-way relaying and IBFD one-way relaying could double the spectrum efficiency theoretically. However, due to imperfect channel estimation, the performance of two-way relaying is degraded by self-interference at the receiver. Moreover, the performance of the IBFD relaying is deteriorated by LBI between the transmit antenna and the receive antenna of the node. Different from the IBFD one-way relay scenario, the IBFD two-way relay system will suffer from an extra level of LBI at the destination receiver. We derive accurate approximations of the average end-to-end capacities for both the IBFD and half-duplex modes. We evaluate the impact of the LBI and channel estimation errors on system performance. Monte Carlo simulations verify the validity of analytical results. It can be shown that with certain signal-to-noise ratio values and effective interference cancellation techniques, the IBFD transmission is preferable in terms of capacity. The IBFD two-way relaying is an attractive technique for practical applications.},
keywords={},
doi={10.1587/transcom.2017EBP3266},
ISSN={1745-1345},
month={April},}
Copy
TY - JOUR
TI - Capacity of Two-Way In-Band Full-Duplex Relaying with Imperfect Channel State Information
T2 - IEICE TRANSACTIONS on Communications
SP - 1108
EP - 1115
AU - Siye WANG
AU - Mingyao WANG
AU - Boyu JIA
AU - Yonghua LI
AU - Wenbo XU
PY - 2018
DO - 10.1587/transcom.2017EBP3266
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E101-B
IS - 4
JA - IEICE TRANSACTIONS on Communications
Y1 - April 2018
AB - In this paper, we investigate the capacity performance of an in-band full-duplex (IBFD) amplify-and-forward two-way relay system under the effect of residual loop-back-interference (LBI). In a two-way IBFD relay system, two IBFD nodes exchange data with each other via an IBFD relay. Both two-way relaying and IBFD one-way relaying could double the spectrum efficiency theoretically. However, due to imperfect channel estimation, the performance of two-way relaying is degraded by self-interference at the receiver. Moreover, the performance of the IBFD relaying is deteriorated by LBI between the transmit antenna and the receive antenna of the node. Different from the IBFD one-way relay scenario, the IBFD two-way relay system will suffer from an extra level of LBI at the destination receiver. We derive accurate approximations of the average end-to-end capacities for both the IBFD and half-duplex modes. We evaluate the impact of the LBI and channel estimation errors on system performance. Monte Carlo simulations verify the validity of analytical results. It can be shown that with certain signal-to-noise ratio values and effective interference cancellation techniques, the IBFD transmission is preferable in terms of capacity. The IBFD two-way relaying is an attractive technique for practical applications.
ER -