BGP dictates routing between autonomous systems with rich policy mechanisms in today's Internet. Operators translate high-level policy principles into low-level configurations of multiple routers without a comprehensive understanding of the actual effect on the network behaviors, making the routing management and operation an error-prone and time-consuming procedure. A fundamental question to answer is: how to verify the intended routing principles against the actual routing effects of an ISP? In this paper, we develop a methodology RPIM (Routing Policy Inference Model) towards this end. RPIM extracts from the routing tables various policy patterns, which represent certain high-level policy intentions of network operators, and then maps the patterns into specific design primitives that the ISP employs. To the best of our knowledge, we are the first to infer routing policies in ISP networks comprehensively from the aspects of business relationship, traffic engineering, scalability and security. We apply RPIM to 11 ASes selected from RIPE NCC RIS project, and query IRR database to validate our approach. Vast majority of inferred policies are confirmed by the policy registries, and RPIM achieves 96.23% accuracy excluding validation difficulties caused by incompleteness of the IRR database.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Wei LIANG, Jingping BI, Zhongcheng LI, Yiting XIA, "Towards Inferring Inter-Domain Routing Policies in ISP Networks" in IEICE TRANSACTIONS on Communications,
vol. E94-B, no. 11, pp. 3049-3056, November 2011, doi: 10.1587/transcom.E94.B.3049.
Abstract: BGP dictates routing between autonomous systems with rich policy mechanisms in today's Internet. Operators translate high-level policy principles into low-level configurations of multiple routers without a comprehensive understanding of the actual effect on the network behaviors, making the routing management and operation an error-prone and time-consuming procedure. A fundamental question to answer is: how to verify the intended routing principles against the actual routing effects of an ISP? In this paper, we develop a methodology RPIM (Routing Policy Inference Model) towards this end. RPIM extracts from the routing tables various policy patterns, which represent certain high-level policy intentions of network operators, and then maps the patterns into specific design primitives that the ISP employs. To the best of our knowledge, we are the first to infer routing policies in ISP networks comprehensively from the aspects of business relationship, traffic engineering, scalability and security. We apply RPIM to 11 ASes selected from RIPE NCC RIS project, and query IRR database to validate our approach. Vast majority of inferred policies are confirmed by the policy registries, and RPIM achieves 96.23% accuracy excluding validation difficulties caused by incompleteness of the IRR database.
URL: https://globals.ieice.org/en_transactions/communications/10.1587/transcom.E94.B.3049/_p
Copy
@ARTICLE{e94-b_11_3049,
author={Wei LIANG, Jingping BI, Zhongcheng LI, Yiting XIA, },
journal={IEICE TRANSACTIONS on Communications},
title={Towards Inferring Inter-Domain Routing Policies in ISP Networks},
year={2011},
volume={E94-B},
number={11},
pages={3049-3056},
abstract={BGP dictates routing between autonomous systems with rich policy mechanisms in today's Internet. Operators translate high-level policy principles into low-level configurations of multiple routers without a comprehensive understanding of the actual effect on the network behaviors, making the routing management and operation an error-prone and time-consuming procedure. A fundamental question to answer is: how to verify the intended routing principles against the actual routing effects of an ISP? In this paper, we develop a methodology RPIM (Routing Policy Inference Model) towards this end. RPIM extracts from the routing tables various policy patterns, which represent certain high-level policy intentions of network operators, and then maps the patterns into specific design primitives that the ISP employs. To the best of our knowledge, we are the first to infer routing policies in ISP networks comprehensively from the aspects of business relationship, traffic engineering, scalability and security. We apply RPIM to 11 ASes selected from RIPE NCC RIS project, and query IRR database to validate our approach. Vast majority of inferred policies are confirmed by the policy registries, and RPIM achieves 96.23% accuracy excluding validation difficulties caused by incompleteness of the IRR database.},
keywords={},
doi={10.1587/transcom.E94.B.3049},
ISSN={1745-1345},
month={November},}
Copy
TY - JOUR
TI - Towards Inferring Inter-Domain Routing Policies in ISP Networks
T2 - IEICE TRANSACTIONS on Communications
SP - 3049
EP - 3056
AU - Wei LIANG
AU - Jingping BI
AU - Zhongcheng LI
AU - Yiting XIA
PY - 2011
DO - 10.1587/transcom.E94.B.3049
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E94-B
IS - 11
JA - IEICE TRANSACTIONS on Communications
Y1 - November 2011
AB - BGP dictates routing between autonomous systems with rich policy mechanisms in today's Internet. Operators translate high-level policy principles into low-level configurations of multiple routers without a comprehensive understanding of the actual effect on the network behaviors, making the routing management and operation an error-prone and time-consuming procedure. A fundamental question to answer is: how to verify the intended routing principles against the actual routing effects of an ISP? In this paper, we develop a methodology RPIM (Routing Policy Inference Model) towards this end. RPIM extracts from the routing tables various policy patterns, which represent certain high-level policy intentions of network operators, and then maps the patterns into specific design primitives that the ISP employs. To the best of our knowledge, we are the first to infer routing policies in ISP networks comprehensively from the aspects of business relationship, traffic engineering, scalability and security. We apply RPIM to 11 ASes selected from RIPE NCC RIS project, and query IRR database to validate our approach. Vast majority of inferred policies are confirmed by the policy registries, and RPIM achieves 96.23% accuracy excluding validation difficulties caused by incompleteness of the IRR database.
ER -