We consider secret key agreement for multiple terminals based on radio propagation characteristics in a wireless relaying system where more than two terminals communicate with each other via a relay. In this system, the multiple terminals share a common secret key generated from their radio propagation characteristics with the help of the relay in the presence of an eavesdropper. In this paper, we present three secret key agreement schemes: an amplify-and-forward (AF) scheme, a signal-combining amplify-and-forward (SC-AF) scheme, and a multiple-access amplify-and-forward (MA-AF) scheme. The key idea of these schemes is that each terminal shares the fading coefficients between all terminals and the relay, and use them as the source of a secret key. The AF scheme is based on a conventional amplify-and-forward two-way relaying method, whereas in the SC-AF scheme and the MA-AF scheme, we apply the idea of analog network coding to secret key agreement. We analyze eavesdropping strategies and show that the AF scheme is not secure if the eavesdropper is located near the relay and can receive signals from the relay without multipath fading and noise. Simulation results show that the SC-AF and MA-AF schemes are effective.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Takayuki SHIMIZU, Hisato IWAI, Hideichi SASAOKA, "Group Secret Key Agreement Based on Radio Propagation Characteristics in Wireless Relaying Systems" in IEICE TRANSACTIONS on Communications,
vol. E95-B, no. 7, pp. 2266-2277, July 2012, doi: 10.1587/transcom.E95.B.2266.
Abstract: We consider secret key agreement for multiple terminals based on radio propagation characteristics in a wireless relaying system where more than two terminals communicate with each other via a relay. In this system, the multiple terminals share a common secret key generated from their radio propagation characteristics with the help of the relay in the presence of an eavesdropper. In this paper, we present three secret key agreement schemes: an amplify-and-forward (AF) scheme, a signal-combining amplify-and-forward (SC-AF) scheme, and a multiple-access amplify-and-forward (MA-AF) scheme. The key idea of these schemes is that each terminal shares the fading coefficients between all terminals and the relay, and use them as the source of a secret key. The AF scheme is based on a conventional amplify-and-forward two-way relaying method, whereas in the SC-AF scheme and the MA-AF scheme, we apply the idea of analog network coding to secret key agreement. We analyze eavesdropping strategies and show that the AF scheme is not secure if the eavesdropper is located near the relay and can receive signals from the relay without multipath fading and noise. Simulation results show that the SC-AF and MA-AF schemes are effective.
URL: https://globals.ieice.org/en_transactions/communications/10.1587/transcom.E95.B.2266/_p
Copy
@ARTICLE{e95-b_7_2266,
author={Takayuki SHIMIZU, Hisato IWAI, Hideichi SASAOKA, },
journal={IEICE TRANSACTIONS on Communications},
title={Group Secret Key Agreement Based on Radio Propagation Characteristics in Wireless Relaying Systems},
year={2012},
volume={E95-B},
number={7},
pages={2266-2277},
abstract={We consider secret key agreement for multiple terminals based on radio propagation characteristics in a wireless relaying system where more than two terminals communicate with each other via a relay. In this system, the multiple terminals share a common secret key generated from their radio propagation characteristics with the help of the relay in the presence of an eavesdropper. In this paper, we present three secret key agreement schemes: an amplify-and-forward (AF) scheme, a signal-combining amplify-and-forward (SC-AF) scheme, and a multiple-access amplify-and-forward (MA-AF) scheme. The key idea of these schemes is that each terminal shares the fading coefficients between all terminals and the relay, and use them as the source of a secret key. The AF scheme is based on a conventional amplify-and-forward two-way relaying method, whereas in the SC-AF scheme and the MA-AF scheme, we apply the idea of analog network coding to secret key agreement. We analyze eavesdropping strategies and show that the AF scheme is not secure if the eavesdropper is located near the relay and can receive signals from the relay without multipath fading and noise. Simulation results show that the SC-AF and MA-AF schemes are effective.},
keywords={},
doi={10.1587/transcom.E95.B.2266},
ISSN={1745-1345},
month={July},}
Copy
TY - JOUR
TI - Group Secret Key Agreement Based on Radio Propagation Characteristics in Wireless Relaying Systems
T2 - IEICE TRANSACTIONS on Communications
SP - 2266
EP - 2277
AU - Takayuki SHIMIZU
AU - Hisato IWAI
AU - Hideichi SASAOKA
PY - 2012
DO - 10.1587/transcom.E95.B.2266
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E95-B
IS - 7
JA - IEICE TRANSACTIONS on Communications
Y1 - July 2012
AB - We consider secret key agreement for multiple terminals based on radio propagation characteristics in a wireless relaying system where more than two terminals communicate with each other via a relay. In this system, the multiple terminals share a common secret key generated from their radio propagation characteristics with the help of the relay in the presence of an eavesdropper. In this paper, we present three secret key agreement schemes: an amplify-and-forward (AF) scheme, a signal-combining amplify-and-forward (SC-AF) scheme, and a multiple-access amplify-and-forward (MA-AF) scheme. The key idea of these schemes is that each terminal shares the fading coefficients between all terminals and the relay, and use them as the source of a secret key. The AF scheme is based on a conventional amplify-and-forward two-way relaying method, whereas in the SC-AF scheme and the MA-AF scheme, we apply the idea of analog network coding to secret key agreement. We analyze eavesdropping strategies and show that the AF scheme is not secure if the eavesdropper is located near the relay and can receive signals from the relay without multipath fading and noise. Simulation results show that the SC-AF and MA-AF schemes are effective.
ER -