For opportunistic spectrum access (OSA), spectrum management is a key function to effectively utilize white space without causing harmful interference to incumbent receivers. Geo-location database approaches using radio propagation estimation have been regarded as practical spectrum management methods. However, propagation models inevitably fail to accurately estimate the path loss in actual radio environments, resulting in estimation error of carrier to interference ratio (CIR) of the incumbent receivers. This could prevent white space from being efficiently utilized, because the allowable transmit power of the opportunistic system has to be limited to keep the CIR at the required level. To improve the accuracy of CIR estimation, we propose the new concept of Interference Monitoring which works in combination with spectrum management. In this method, a monitoring node located near the incumbent receivers actually measures both the interference signals and the incumbent signals. Using the measurement results, the CIR estimates are corrected based on the minimum mean square error (MMSE) criterion. The proposed Interference Monitoring can be extended to establish cooperation among multiple monitoring nodes and thus spatial diversity. Analytical evaluations assuming a simple cellular system model show that Interference Monitoring can more accurately estimate CIR, and thus it can significantly increase the allowable transmit power. For an urban macro cell, Interference Monitoring with a single node achieved about a 6.5 dB increase in the transmit power; Cooperative Interference Monitoring with 4 nodes achieved about a 13.5 dB increase. Thus, Interference Monitoring-based spectrum management can maximize opportunities for white space utilization without imposing additional interference to the incumbent system.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Kazushi MURAOKA, Hiroto SUGAHARA, Masayuki ARIYOSHI, "Interference Monitoring-Based Spectrum Management to Maximize White Space Utilization for Cognitive Radios" in IEICE TRANSACTIONS on Communications,
vol. E96-B, no. 3, pp. 869-879, March 2013, doi: 10.1587/transcom.E96.B.869.
Abstract: For opportunistic spectrum access (OSA), spectrum management is a key function to effectively utilize white space without causing harmful interference to incumbent receivers. Geo-location database approaches using radio propagation estimation have been regarded as practical spectrum management methods. However, propagation models inevitably fail to accurately estimate the path loss in actual radio environments, resulting in estimation error of carrier to interference ratio (CIR) of the incumbent receivers. This could prevent white space from being efficiently utilized, because the allowable transmit power of the opportunistic system has to be limited to keep the CIR at the required level. To improve the accuracy of CIR estimation, we propose the new concept of Interference Monitoring which works in combination with spectrum management. In this method, a monitoring node located near the incumbent receivers actually measures both the interference signals and the incumbent signals. Using the measurement results, the CIR estimates are corrected based on the minimum mean square error (MMSE) criterion. The proposed Interference Monitoring can be extended to establish cooperation among multiple monitoring nodes and thus spatial diversity. Analytical evaluations assuming a simple cellular system model show that Interference Monitoring can more accurately estimate CIR, and thus it can significantly increase the allowable transmit power. For an urban macro cell, Interference Monitoring with a single node achieved about a 6.5 dB increase in the transmit power; Cooperative Interference Monitoring with 4 nodes achieved about a 13.5 dB increase. Thus, Interference Monitoring-based spectrum management can maximize opportunities for white space utilization without imposing additional interference to the incumbent system.
URL: https://globals.ieice.org/en_transactions/communications/10.1587/transcom.E96.B.869/_p
Copy
@ARTICLE{e96-b_3_869,
author={Kazushi MURAOKA, Hiroto SUGAHARA, Masayuki ARIYOSHI, },
journal={IEICE TRANSACTIONS on Communications},
title={Interference Monitoring-Based Spectrum Management to Maximize White Space Utilization for Cognitive Radios},
year={2013},
volume={E96-B},
number={3},
pages={869-879},
abstract={For opportunistic spectrum access (OSA), spectrum management is a key function to effectively utilize white space without causing harmful interference to incumbent receivers. Geo-location database approaches using radio propagation estimation have been regarded as practical spectrum management methods. However, propagation models inevitably fail to accurately estimate the path loss in actual radio environments, resulting in estimation error of carrier to interference ratio (CIR) of the incumbent receivers. This could prevent white space from being efficiently utilized, because the allowable transmit power of the opportunistic system has to be limited to keep the CIR at the required level. To improve the accuracy of CIR estimation, we propose the new concept of Interference Monitoring which works in combination with spectrum management. In this method, a monitoring node located near the incumbent receivers actually measures both the interference signals and the incumbent signals. Using the measurement results, the CIR estimates are corrected based on the minimum mean square error (MMSE) criterion. The proposed Interference Monitoring can be extended to establish cooperation among multiple monitoring nodes and thus spatial diversity. Analytical evaluations assuming a simple cellular system model show that Interference Monitoring can more accurately estimate CIR, and thus it can significantly increase the allowable transmit power. For an urban macro cell, Interference Monitoring with a single node achieved about a 6.5 dB increase in the transmit power; Cooperative Interference Monitoring with 4 nodes achieved about a 13.5 dB increase. Thus, Interference Monitoring-based spectrum management can maximize opportunities for white space utilization without imposing additional interference to the incumbent system.},
keywords={},
doi={10.1587/transcom.E96.B.869},
ISSN={1745-1345},
month={March},}
Copy
TY - JOUR
TI - Interference Monitoring-Based Spectrum Management to Maximize White Space Utilization for Cognitive Radios
T2 - IEICE TRANSACTIONS on Communications
SP - 869
EP - 879
AU - Kazushi MURAOKA
AU - Hiroto SUGAHARA
AU - Masayuki ARIYOSHI
PY - 2013
DO - 10.1587/transcom.E96.B.869
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E96-B
IS - 3
JA - IEICE TRANSACTIONS on Communications
Y1 - March 2013
AB - For opportunistic spectrum access (OSA), spectrum management is a key function to effectively utilize white space without causing harmful interference to incumbent receivers. Geo-location database approaches using radio propagation estimation have been regarded as practical spectrum management methods. However, propagation models inevitably fail to accurately estimate the path loss in actual radio environments, resulting in estimation error of carrier to interference ratio (CIR) of the incumbent receivers. This could prevent white space from being efficiently utilized, because the allowable transmit power of the opportunistic system has to be limited to keep the CIR at the required level. To improve the accuracy of CIR estimation, we propose the new concept of Interference Monitoring which works in combination with spectrum management. In this method, a monitoring node located near the incumbent receivers actually measures both the interference signals and the incumbent signals. Using the measurement results, the CIR estimates are corrected based on the minimum mean square error (MMSE) criterion. The proposed Interference Monitoring can be extended to establish cooperation among multiple monitoring nodes and thus spatial diversity. Analytical evaluations assuming a simple cellular system model show that Interference Monitoring can more accurately estimate CIR, and thus it can significantly increase the allowable transmit power. For an urban macro cell, Interference Monitoring with a single node achieved about a 6.5 dB increase in the transmit power; Cooperative Interference Monitoring with 4 nodes achieved about a 13.5 dB increase. Thus, Interference Monitoring-based spectrum management can maximize opportunities for white space utilization without imposing additional interference to the incumbent system.
ER -