In this study, a new method for Decode-Distributed Beamforming (D-DB) relaying is proposed. Each relay node decodes the source symbol by maximum likelihood detection. The detected symbol is entered into the stored Quantized Equal-gain (QE) codebook, where the label of the phase region is provided by a feedback link from the destination node. Therefore, the proposed relay network forms a Decode-Distributed QE (D-DQE) relay network. The performances of the D-DQE codebooks are examined by Monte-Carlo simulations, in which the feedback links and channel estimations are assumed to be error-free. The simulation results reveal that the symbol error rates of the D-DQE relay system improve the error performance of the QE codebooks when relay nodes are close to the source node. When error-free feedback bits are provided, the performance of the proposed D-DQE is better than that of Alamouti's Decode-Distributed Space-Time Coding (D-DSTC) relay network. The weakest relays are rejected to improve the performance of the D-DQE codebooks and reduce the number of feedback bits. This relay network is called Decode-Relay Rejection for Distributed Beamforming (D-RRDB) relay networks.
Yaser FAEDFAR
Universiti Sience Malaysia
Mohd Fadzli Mohd SALLEH
Universiti Sience Malaysia
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yaser FAEDFAR, Mohd Fadzli Mohd SALLEH, "D-DB and D-RRDB Relaying with D-DQE Relay Network" in IEICE TRANSACTIONS on Communications,
vol. E97-B, no. 2, pp. 495-503, February 2014, doi: 10.1587/transcom.E97.B.495.
Abstract: In this study, a new method for Decode-Distributed Beamforming (D-DB) relaying is proposed. Each relay node decodes the source symbol by maximum likelihood detection. The detected symbol is entered into the stored Quantized Equal-gain (QE) codebook, where the label of the phase region is provided by a feedback link from the destination node. Therefore, the proposed relay network forms a Decode-Distributed QE (D-DQE) relay network. The performances of the D-DQE codebooks are examined by Monte-Carlo simulations, in which the feedback links and channel estimations are assumed to be error-free. The simulation results reveal that the symbol error rates of the D-DQE relay system improve the error performance of the QE codebooks when relay nodes are close to the source node. When error-free feedback bits are provided, the performance of the proposed D-DQE is better than that of Alamouti's Decode-Distributed Space-Time Coding (D-DSTC) relay network. The weakest relays are rejected to improve the performance of the D-DQE codebooks and reduce the number of feedback bits. This relay network is called Decode-Relay Rejection for Distributed Beamforming (D-RRDB) relay networks.
URL: https://globals.ieice.org/en_transactions/communications/10.1587/transcom.E97.B.495/_p
Copy
@ARTICLE{e97-b_2_495,
author={Yaser FAEDFAR, Mohd Fadzli Mohd SALLEH, },
journal={IEICE TRANSACTIONS on Communications},
title={D-DB and D-RRDB Relaying with D-DQE Relay Network},
year={2014},
volume={E97-B},
number={2},
pages={495-503},
abstract={In this study, a new method for Decode-Distributed Beamforming (D-DB) relaying is proposed. Each relay node decodes the source symbol by maximum likelihood detection. The detected symbol is entered into the stored Quantized Equal-gain (QE) codebook, where the label of the phase region is provided by a feedback link from the destination node. Therefore, the proposed relay network forms a Decode-Distributed QE (D-DQE) relay network. The performances of the D-DQE codebooks are examined by Monte-Carlo simulations, in which the feedback links and channel estimations are assumed to be error-free. The simulation results reveal that the symbol error rates of the D-DQE relay system improve the error performance of the QE codebooks when relay nodes are close to the source node. When error-free feedback bits are provided, the performance of the proposed D-DQE is better than that of Alamouti's Decode-Distributed Space-Time Coding (D-DSTC) relay network. The weakest relays are rejected to improve the performance of the D-DQE codebooks and reduce the number of feedback bits. This relay network is called Decode-Relay Rejection for Distributed Beamforming (D-RRDB) relay networks.},
keywords={},
doi={10.1587/transcom.E97.B.495},
ISSN={1745-1345},
month={February},}
Copy
TY - JOUR
TI - D-DB and D-RRDB Relaying with D-DQE Relay Network
T2 - IEICE TRANSACTIONS on Communications
SP - 495
EP - 503
AU - Yaser FAEDFAR
AU - Mohd Fadzli Mohd SALLEH
PY - 2014
DO - 10.1587/transcom.E97.B.495
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E97-B
IS - 2
JA - IEICE TRANSACTIONS on Communications
Y1 - February 2014
AB - In this study, a new method for Decode-Distributed Beamforming (D-DB) relaying is proposed. Each relay node decodes the source symbol by maximum likelihood detection. The detected symbol is entered into the stored Quantized Equal-gain (QE) codebook, where the label of the phase region is provided by a feedback link from the destination node. Therefore, the proposed relay network forms a Decode-Distributed QE (D-DQE) relay network. The performances of the D-DQE codebooks are examined by Monte-Carlo simulations, in which the feedback links and channel estimations are assumed to be error-free. The simulation results reveal that the symbol error rates of the D-DQE relay system improve the error performance of the QE codebooks when relay nodes are close to the source node. When error-free feedback bits are provided, the performance of the proposed D-DQE is better than that of Alamouti's Decode-Distributed Space-Time Coding (D-DSTC) relay network. The weakest relays are rejected to improve the performance of the D-DQE codebooks and reduce the number of feedback bits. This relay network is called Decode-Relay Rejection for Distributed Beamforming (D-RRDB) relay networks.
ER -