This paper presents a codeword metric calculation scheme for two step joint decoding of block coded signals in overloaded multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. A two step joint decoding scheme has been proposed for the complexity reduction as compared to joint maximum likelihood decoding in overloaded MIMO systems. Outer codes are widely used in wireless LANs such as IEEE802.11n. However, the two step joint decoding has not been combined with an outer code. In the first step of the two step joint decoding candidate codewords for metric calculation in the second step are selected. The selection of the candidate codewords in the inner block code may not always be able to provide the metric of a binary coded symbol for the outer code. Moreover, a bit flipping based codeword selection scheme in the two step joint decoding may not always provide the second best candidate codeword. Thus, in the proposed scheme the metric of the binary coded symbol calculated in the first step is reused in the second step of two step joint decoding. It is shown that the two step joint decoding with the proposed metric calculation scheme achieves better performance than that of the joint decoding with the bit flipping based codeword calculation scheme and reduces the complexity by about 0.013 for 4 signal streams with the cost of bit error rate degradation within 0.5dB.
Yoshihito DOI
Keio University
Yukitoshi SANADA
Keio University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yoshihito DOI, Yukitoshi SANADA, "Codeword Metric Calculation Scheme for Outer Code in Overloaded MIMO-OFDM System" in IEICE TRANSACTIONS on Communications,
vol. E98-B, no. 8, pp. 1598-1605, August 2015, doi: 10.1587/transcom.E98.B.1598.
Abstract: This paper presents a codeword metric calculation scheme for two step joint decoding of block coded signals in overloaded multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. A two step joint decoding scheme has been proposed for the complexity reduction as compared to joint maximum likelihood decoding in overloaded MIMO systems. Outer codes are widely used in wireless LANs such as IEEE802.11n. However, the two step joint decoding has not been combined with an outer code. In the first step of the two step joint decoding candidate codewords for metric calculation in the second step are selected. The selection of the candidate codewords in the inner block code may not always be able to provide the metric of a binary coded symbol for the outer code. Moreover, a bit flipping based codeword selection scheme in the two step joint decoding may not always provide the second best candidate codeword. Thus, in the proposed scheme the metric of the binary coded symbol calculated in the first step is reused in the second step of two step joint decoding. It is shown that the two step joint decoding with the proposed metric calculation scheme achieves better performance than that of the joint decoding with the bit flipping based codeword calculation scheme and reduces the complexity by about 0.013 for 4 signal streams with the cost of bit error rate degradation within 0.5dB.
URL: https://globals.ieice.org/en_transactions/communications/10.1587/transcom.E98.B.1598/_p
Copy
@ARTICLE{e98-b_8_1598,
author={Yoshihito DOI, Yukitoshi SANADA, },
journal={IEICE TRANSACTIONS on Communications},
title={Codeword Metric Calculation Scheme for Outer Code in Overloaded MIMO-OFDM System},
year={2015},
volume={E98-B},
number={8},
pages={1598-1605},
abstract={This paper presents a codeword metric calculation scheme for two step joint decoding of block coded signals in overloaded multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. A two step joint decoding scheme has been proposed for the complexity reduction as compared to joint maximum likelihood decoding in overloaded MIMO systems. Outer codes are widely used in wireless LANs such as IEEE802.11n. However, the two step joint decoding has not been combined with an outer code. In the first step of the two step joint decoding candidate codewords for metric calculation in the second step are selected. The selection of the candidate codewords in the inner block code may not always be able to provide the metric of a binary coded symbol for the outer code. Moreover, a bit flipping based codeword selection scheme in the two step joint decoding may not always provide the second best candidate codeword. Thus, in the proposed scheme the metric of the binary coded symbol calculated in the first step is reused in the second step of two step joint decoding. It is shown that the two step joint decoding with the proposed metric calculation scheme achieves better performance than that of the joint decoding with the bit flipping based codeword calculation scheme and reduces the complexity by about 0.013 for 4 signal streams with the cost of bit error rate degradation within 0.5dB.},
keywords={},
doi={10.1587/transcom.E98.B.1598},
ISSN={1745-1345},
month={August},}
Copy
TY - JOUR
TI - Codeword Metric Calculation Scheme for Outer Code in Overloaded MIMO-OFDM System
T2 - IEICE TRANSACTIONS on Communications
SP - 1598
EP - 1605
AU - Yoshihito DOI
AU - Yukitoshi SANADA
PY - 2015
DO - 10.1587/transcom.E98.B.1598
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E98-B
IS - 8
JA - IEICE TRANSACTIONS on Communications
Y1 - August 2015
AB - This paper presents a codeword metric calculation scheme for two step joint decoding of block coded signals in overloaded multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. A two step joint decoding scheme has been proposed for the complexity reduction as compared to joint maximum likelihood decoding in overloaded MIMO systems. Outer codes are widely used in wireless LANs such as IEEE802.11n. However, the two step joint decoding has not been combined with an outer code. In the first step of the two step joint decoding candidate codewords for metric calculation in the second step are selected. The selection of the candidate codewords in the inner block code may not always be able to provide the metric of a binary coded symbol for the outer code. Moreover, a bit flipping based codeword selection scheme in the two step joint decoding may not always provide the second best candidate codeword. Thus, in the proposed scheme the metric of the binary coded symbol calculated in the first step is reused in the second step of two step joint decoding. It is shown that the two step joint decoding with the proposed metric calculation scheme achieves better performance than that of the joint decoding with the bit flipping based codeword calculation scheme and reduces the complexity by about 0.013 for 4 signal streams with the cost of bit error rate degradation within 0.5dB.
ER -