In a multi-tenant data center, nodes and links of tenants' virtual networks (VNs) share a single component of the physical substrate network (SN). The failure of a single SN component can thereby cause the simultaneous failures of multiple nodes and links in a single VN; this complex of failures must significantly disrupt the services offered on the VN. In the present paper, we clarify how the fault tolerance of each VN is affected by a single SN failure, especially from the perspective of VN allocation in the SN. We propose a VN allocation model for multi-tenant data centers and formulate a problem that deals with the bandwidth loss in a single VN due a single SN failure. We conduct numerical simulations (with the setting that has 1.7×108bit/s bandwidth demand on each VN, (denoted by Ci)). When each node in each VN is scattered and mapped to an individual physical server, each VN can have the minimum bandwidth loss (5.3×102bit/s (3.0×10-6×Ci)) but the maximum required bandwidth between physical servers (1.0×109bit/s (5.7×Ci)). The balance between the bandwidth loss and the required physical resources can be optimized by assigning every four nodes of each VN to an individual physical server, meaning that we minimize the bandwidth loss without over-provisioning of core switches.
Yukio OGAWA
Hitachi, Ltd.
Go HASEGAWA
Osaka University
Masayuki MURATA
Osaka University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yukio OGAWA, Go HASEGAWA, Masayuki MURATA, "Virtual Network Allocation for Fault Tolerance Balanced with Physical Resources Consumption in a Multi-Tenant Data Center" in IEICE TRANSACTIONS on Communications,
vol. E98-B, no. 11, pp. 2121-2131, November 2015, doi: 10.1587/transcom.E98.B.2121.
Abstract: In a multi-tenant data center, nodes and links of tenants' virtual networks (VNs) share a single component of the physical substrate network (SN). The failure of a single SN component can thereby cause the simultaneous failures of multiple nodes and links in a single VN; this complex of failures must significantly disrupt the services offered on the VN. In the present paper, we clarify how the fault tolerance of each VN is affected by a single SN failure, especially from the perspective of VN allocation in the SN. We propose a VN allocation model for multi-tenant data centers and formulate a problem that deals with the bandwidth loss in a single VN due a single SN failure. We conduct numerical simulations (with the setting that has 1.7×108bit/s bandwidth demand on each VN, (denoted by Ci)). When each node in each VN is scattered and mapped to an individual physical server, each VN can have the minimum bandwidth loss (5.3×102bit/s (3.0×10-6×Ci)) but the maximum required bandwidth between physical servers (1.0×109bit/s (5.7×Ci)). The balance between the bandwidth loss and the required physical resources can be optimized by assigning every four nodes of each VN to an individual physical server, meaning that we minimize the bandwidth loss without over-provisioning of core switches.
URL: https://globals.ieice.org/en_transactions/communications/10.1587/transcom.E98.B.2121/_p
Copy
@ARTICLE{e98-b_11_2121,
author={Yukio OGAWA, Go HASEGAWA, Masayuki MURATA, },
journal={IEICE TRANSACTIONS on Communications},
title={Virtual Network Allocation for Fault Tolerance Balanced with Physical Resources Consumption in a Multi-Tenant Data Center},
year={2015},
volume={E98-B},
number={11},
pages={2121-2131},
abstract={In a multi-tenant data center, nodes and links of tenants' virtual networks (VNs) share a single component of the physical substrate network (SN). The failure of a single SN component can thereby cause the simultaneous failures of multiple nodes and links in a single VN; this complex of failures must significantly disrupt the services offered on the VN. In the present paper, we clarify how the fault tolerance of each VN is affected by a single SN failure, especially from the perspective of VN allocation in the SN. We propose a VN allocation model for multi-tenant data centers and formulate a problem that deals with the bandwidth loss in a single VN due a single SN failure. We conduct numerical simulations (with the setting that has 1.7×108bit/s bandwidth demand on each VN, (denoted by Ci)). When each node in each VN is scattered and mapped to an individual physical server, each VN can have the minimum bandwidth loss (5.3×102bit/s (3.0×10-6×Ci)) but the maximum required bandwidth between physical servers (1.0×109bit/s (5.7×Ci)). The balance between the bandwidth loss and the required physical resources can be optimized by assigning every four nodes of each VN to an individual physical server, meaning that we minimize the bandwidth loss without over-provisioning of core switches.},
keywords={},
doi={10.1587/transcom.E98.B.2121},
ISSN={1745-1345},
month={November},}
Copy
TY - JOUR
TI - Virtual Network Allocation for Fault Tolerance Balanced with Physical Resources Consumption in a Multi-Tenant Data Center
T2 - IEICE TRANSACTIONS on Communications
SP - 2121
EP - 2131
AU - Yukio OGAWA
AU - Go HASEGAWA
AU - Masayuki MURATA
PY - 2015
DO - 10.1587/transcom.E98.B.2121
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E98-B
IS - 11
JA - IEICE TRANSACTIONS on Communications
Y1 - November 2015
AB - In a multi-tenant data center, nodes and links of tenants' virtual networks (VNs) share a single component of the physical substrate network (SN). The failure of a single SN component can thereby cause the simultaneous failures of multiple nodes and links in a single VN; this complex of failures must significantly disrupt the services offered on the VN. In the present paper, we clarify how the fault tolerance of each VN is affected by a single SN failure, especially from the perspective of VN allocation in the SN. We propose a VN allocation model for multi-tenant data centers and formulate a problem that deals with the bandwidth loss in a single VN due a single SN failure. We conduct numerical simulations (with the setting that has 1.7×108bit/s bandwidth demand on each VN, (denoted by Ci)). When each node in each VN is scattered and mapped to an individual physical server, each VN can have the minimum bandwidth loss (5.3×102bit/s (3.0×10-6×Ci)) but the maximum required bandwidth between physical servers (1.0×109bit/s (5.7×Ci)). The balance between the bandwidth loss and the required physical resources can be optimized by assigning every four nodes of each VN to an individual physical server, meaning that we minimize the bandwidth loss without over-provisioning of core switches.
ER -