The future trends of optical technologies combined with LSI are reviewed. Present problems of LSI, and the possible solutions to these problems through the merger of the optical technology into LSI are discussed. One of the present trends in interconnection between LSI components is the timeserial approach, originally developed for the optical communication. This method is capable of high speed data transfer. The other is a space-parallel approach, arising from the two-dimensional nature of the light propagation. This approach has the capability of performing parallel processing. A hybrid OEIC, possibly on GaAs, is discussed as an example of future photonic LSI. The lack of key devices is a fundamental barrier to the future improvement of photonic LSI. Direct interaction between photons and electrons is a promissing approach. Some of the Author's ideas to promote the merger of photonics and LSI are proposed.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yoshihiko MIZUSHIMA, "Photonic LSI--Merging the Optical Technology into LSI--" in IEICE TRANSACTIONS on Electronics,
vol. E76-C, no. 1, pp. 4-12, January 1993, doi: .
Abstract: The future trends of optical technologies combined with LSI are reviewed. Present problems of LSI, and the possible solutions to these problems through the merger of the optical technology into LSI are discussed. One of the present trends in interconnection between LSI components is the timeserial approach, originally developed for the optical communication. This method is capable of high speed data transfer. The other is a space-parallel approach, arising from the two-dimensional nature of the light propagation. This approach has the capability of performing parallel processing. A hybrid OEIC, possibly on GaAs, is discussed as an example of future photonic LSI. The lack of key devices is a fundamental barrier to the future improvement of photonic LSI. Direct interaction between photons and electrons is a promissing approach. Some of the Author's ideas to promote the merger of photonics and LSI are proposed.
URL: https://globals.ieice.org/en_transactions/electronics/10.1587/e76-c_1_4/_p
Copy
@ARTICLE{e76-c_1_4,
author={Yoshihiko MIZUSHIMA, },
journal={IEICE TRANSACTIONS on Electronics},
title={Photonic LSI--Merging the Optical Technology into LSI--},
year={1993},
volume={E76-C},
number={1},
pages={4-12},
abstract={The future trends of optical technologies combined with LSI are reviewed. Present problems of LSI, and the possible solutions to these problems through the merger of the optical technology into LSI are discussed. One of the present trends in interconnection between LSI components is the timeserial approach, originally developed for the optical communication. This method is capable of high speed data transfer. The other is a space-parallel approach, arising from the two-dimensional nature of the light propagation. This approach has the capability of performing parallel processing. A hybrid OEIC, possibly on GaAs, is discussed as an example of future photonic LSI. The lack of key devices is a fundamental barrier to the future improvement of photonic LSI. Direct interaction between photons and electrons is a promissing approach. Some of the Author's ideas to promote the merger of photonics and LSI are proposed.},
keywords={},
doi={},
ISSN={},
month={January},}
Copy
TY - JOUR
TI - Photonic LSI--Merging the Optical Technology into LSI--
T2 - IEICE TRANSACTIONS on Electronics
SP - 4
EP - 12
AU - Yoshihiko MIZUSHIMA
PY - 1993
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E76-C
IS - 1
JA - IEICE TRANSACTIONS on Electronics
Y1 - January 1993
AB - The future trends of optical technologies combined with LSI are reviewed. Present problems of LSI, and the possible solutions to these problems through the merger of the optical technology into LSI are discussed. One of the present trends in interconnection between LSI components is the timeserial approach, originally developed for the optical communication. This method is capable of high speed data transfer. The other is a space-parallel approach, arising from the two-dimensional nature of the light propagation. This approach has the capability of performing parallel processing. A hybrid OEIC, possibly on GaAs, is discussed as an example of future photonic LSI. The lack of key devices is a fundamental barrier to the future improvement of photonic LSI. Direct interaction between photons and electrons is a promissing approach. Some of the Author's ideas to promote the merger of photonics and LSI are proposed.
ER -