High performance I/O circuits for fast memory devices such as Synchronous DRAMs were studied. For a TTL interface, the effect of capacitive loading must increase as I/O speed is increased, and signal termination is required for frequencies over 100 MHz. For this reason, industry-proposed alternative interface approaches such as GTL and CTT were investigated using experimental test devices. The results showed that open-drain type drivers have a problem; as the frequency increases, the high-level output voltage becomes degraded. In contrast, a push-pull driver T-LVTTL (Terminated Low Voltage TTL), developed as an implementation of the CTT interface specification, was found to be suitable for high-speed data transfer. A high-speed bus driver circuit connecting an impedance element in series to the stub is proposed as an application of T-LVTTL. Simulated results showed that this scheme greatly improves the signal integrity of memory bus systems; the operating frequency could very well be the highest among several schemes discussed as candidates for the post-LVTTL standard interface.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Masao TAGUCHI, "High-Speed, Small-Amplitude I/O Interface Circuits for Memory Bus Application" in IEICE TRANSACTIONS on Electronics,
vol. E77-C, no. 12, pp. 1944-1950, December 1994, doi: .
Abstract: High performance I/O circuits for fast memory devices such as Synchronous DRAMs were studied. For a TTL interface, the effect of capacitive loading must increase as I/O speed is increased, and signal termination is required for frequencies over 100 MHz. For this reason, industry-proposed alternative interface approaches such as GTL and CTT were investigated using experimental test devices. The results showed that open-drain type drivers have a problem; as the frequency increases, the high-level output voltage becomes degraded. In contrast, a push-pull driver T-LVTTL (Terminated Low Voltage TTL), developed as an implementation of the CTT interface specification, was found to be suitable for high-speed data transfer. A high-speed bus driver circuit connecting an impedance element in series to the stub is proposed as an application of T-LVTTL. Simulated results showed that this scheme greatly improves the signal integrity of memory bus systems; the operating frequency could very well be the highest among several schemes discussed as candidates for the post-LVTTL standard interface.
URL: https://globals.ieice.org/en_transactions/electronics/10.1587/e77-c_12_1944/_p
Copy
@ARTICLE{e77-c_12_1944,
author={Masao TAGUCHI, },
journal={IEICE TRANSACTIONS on Electronics},
title={High-Speed, Small-Amplitude I/O Interface Circuits for Memory Bus Application},
year={1994},
volume={E77-C},
number={12},
pages={1944-1950},
abstract={High performance I/O circuits for fast memory devices such as Synchronous DRAMs were studied. For a TTL interface, the effect of capacitive loading must increase as I/O speed is increased, and signal termination is required for frequencies over 100 MHz. For this reason, industry-proposed alternative interface approaches such as GTL and CTT were investigated using experimental test devices. The results showed that open-drain type drivers have a problem; as the frequency increases, the high-level output voltage becomes degraded. In contrast, a push-pull driver T-LVTTL (Terminated Low Voltage TTL), developed as an implementation of the CTT interface specification, was found to be suitable for high-speed data transfer. A high-speed bus driver circuit connecting an impedance element in series to the stub is proposed as an application of T-LVTTL. Simulated results showed that this scheme greatly improves the signal integrity of memory bus systems; the operating frequency could very well be the highest among several schemes discussed as candidates for the post-LVTTL standard interface.},
keywords={},
doi={},
ISSN={},
month={December},}
Copy
TY - JOUR
TI - High-Speed, Small-Amplitude I/O Interface Circuits for Memory Bus Application
T2 - IEICE TRANSACTIONS on Electronics
SP - 1944
EP - 1950
AU - Masao TAGUCHI
PY - 1994
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E77-C
IS - 12
JA - IEICE TRANSACTIONS on Electronics
Y1 - December 1994
AB - High performance I/O circuits for fast memory devices such as Synchronous DRAMs were studied. For a TTL interface, the effect of capacitive loading must increase as I/O speed is increased, and signal termination is required for frequencies over 100 MHz. For this reason, industry-proposed alternative interface approaches such as GTL and CTT were investigated using experimental test devices. The results showed that open-drain type drivers have a problem; as the frequency increases, the high-level output voltage becomes degraded. In contrast, a push-pull driver T-LVTTL (Terminated Low Voltage TTL), developed as an implementation of the CTT interface specification, was found to be suitable for high-speed data transfer. A high-speed bus driver circuit connecting an impedance element in series to the stub is proposed as an application of T-LVTTL. Simulated results showed that this scheme greatly improves the signal integrity of memory bus systems; the operating frequency could very well be the highest among several schemes discussed as candidates for the post-LVTTL standard interface.
ER -