A Fully Depleted CMOS/SIMOX LSI Scheme Using a LVTTL-Compatible and Over-2, 000-V ESD-Hardness I/O Circuit for Reduction in Active and Static Power Consumption

Yusuke OHTOMO, Takeshi MIZUSAWA, Kazuyoshi NISHIMURA, Hirotoshi SAWADA, Masayuki INO

  • Full Text Views

    0

  • Cite this

Summary :

In a fully depleted (FD) CMOS/SIMOX device, the threshold voltage can be reduced by 0.1 V while keeping the same off current as that of bulk CMOS. This enhances gate speed at low supply voltage so that lowering supply voltage reduces both active and static power consumption without additional circuits. An LSI architecture featuring a low supply voltage for internal gates and an LVTTL interface is proposed. However, to implement the architecture with FD-CMOS/SIMOX devices, there were problems which were low drain-breakdown voltage and half electrostatic discharge (ESD) hardness compared with that of bulk CMOS devices. An LVTTL-compatible output buffer circuit is developed to overcome the low drain-breakdown voltage. Cascade circuits are applied at an output stage and a voltage converter with cross-coupled PMOS is used for reducing the applied voltage from 3.3 V to 2.2 V or less. Using this output buffer together with an LVTTL-compatible input buffer, external 3.3 V signal can be converted from/to 2.0-1.2 V signal with little static current. The cascade circuit, however, weakens the already low ESD hardness of the CMOS/SIMOX circuit. The new ESD protection circuit provides robust LVTTL compatible I/O circuits. It features lateral diodes working as drain-well-diodes in bulk CMOS and protection devices for dual power supplies. A diode/MOS merged layout pattern is used for both to dissipate heat and save area. The CMOS/SIMOX ESD protection circuit is the first one to meet the MIL standard. Using 120 kgate test LSIs made on 300 kgate array with 0.25-µm CMOS/SIMOX, 0.25-µm bulk CMOS and 0.5-µm bulk CMOS, power consumptions are compared. The 0.25-µm CMOS/SIMOX LSI can operate at an internal voltage of 1.2 V at the same frequency as the 0.5-µm LSI operating at 3.3 V. The internal supply voltage reduction scheme reduces LSI power consumption to 3% of that of 0.5-µm bulk LVTTL-LSI.

Publication
IEICE TRANSACTIONS on Electronics Vol.E80-C No.3 pp.455-463
Publication Date
1997/03/25
Publicized
Online ISSN
DOI
Type of Manuscript
Special Section PAPER (Special Issue on SOI Devices and Their Process Technologies)
Category

Authors

Keyword

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.