Monte Carlo simulation of the low field electron mobility of strained Si and SiGe active layers on Si and SiGe substrates is considered. The Ge mole fractions of both the active layer and the substrate are varied in a wide range. The linear deformation potential theory is used to calculate the shifts of the conduction band minima due to uniaxial strain along [001]. The energy shifts and the effective masses are assumed to be functions of the Ge mole fraction. It is shown that in spite of the fact that the L-valleys remain degenerate under strain conditions considered here, they play an important role at very high Ge compositions especially when SiGe as substrate is used. We found that in this case the repopulation effects of the X-valleys affect electron mobility much stronger than the alloy scattering. We also generalize the ionized impurity scattering rate to include strain effects for doped materials and show that some of the important parameters such as effective density of states, inverse screening length, and the screening function are split due to strain and must be properly modified. Finally, we perform several simulations for undoped and doped materials using Si and SiGe substrates.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Sergey SMIRNOV, Hans KOSINA, Siegfried SELBERHERR, "Investigation of the Electron Mobility in Strained Si1-xGex at High Ge Composition" in IEICE TRANSACTIONS on Electronics,
vol. E86-C, no. 3, pp. 350-356, March 2003, doi: .
Abstract: Monte Carlo simulation of the low field electron mobility of strained Si and SiGe active layers on Si and SiGe substrates is considered. The Ge mole fractions of both the active layer and the substrate are varied in a wide range. The linear deformation potential theory is used to calculate the shifts of the conduction band minima due to uniaxial strain along [001]. The energy shifts and the effective masses are assumed to be functions of the Ge mole fraction. It is shown that in spite of the fact that the L-valleys remain degenerate under strain conditions considered here, they play an important role at very high Ge compositions especially when SiGe as substrate is used. We found that in this case the repopulation effects of the X-valleys affect electron mobility much stronger than the alloy scattering. We also generalize the ionized impurity scattering rate to include strain effects for doped materials and show that some of the important parameters such as effective density of states, inverse screening length, and the screening function are split due to strain and must be properly modified. Finally, we perform several simulations for undoped and doped materials using Si and SiGe substrates.
URL: https://globals.ieice.org/en_transactions/electronics/10.1587/e86-c_3_350/_p
Copy
@ARTICLE{e86-c_3_350,
author={Sergey SMIRNOV, Hans KOSINA, Siegfried SELBERHERR, },
journal={IEICE TRANSACTIONS on Electronics},
title={Investigation of the Electron Mobility in Strained Si1-xGex at High Ge Composition},
year={2003},
volume={E86-C},
number={3},
pages={350-356},
abstract={Monte Carlo simulation of the low field electron mobility of strained Si and SiGe active layers on Si and SiGe substrates is considered. The Ge mole fractions of both the active layer and the substrate are varied in a wide range. The linear deformation potential theory is used to calculate the shifts of the conduction band minima due to uniaxial strain along [001]. The energy shifts and the effective masses are assumed to be functions of the Ge mole fraction. It is shown that in spite of the fact that the L-valleys remain degenerate under strain conditions considered here, they play an important role at very high Ge compositions especially when SiGe as substrate is used. We found that in this case the repopulation effects of the X-valleys affect electron mobility much stronger than the alloy scattering. We also generalize the ionized impurity scattering rate to include strain effects for doped materials and show that some of the important parameters such as effective density of states, inverse screening length, and the screening function are split due to strain and must be properly modified. Finally, we perform several simulations for undoped and doped materials using Si and SiGe substrates.},
keywords={},
doi={},
ISSN={},
month={March},}
Copy
TY - JOUR
TI - Investigation of the Electron Mobility in Strained Si1-xGex at High Ge Composition
T2 - IEICE TRANSACTIONS on Electronics
SP - 350
EP - 356
AU - Sergey SMIRNOV
AU - Hans KOSINA
AU - Siegfried SELBERHERR
PY - 2003
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E86-C
IS - 3
JA - IEICE TRANSACTIONS on Electronics
Y1 - March 2003
AB - Monte Carlo simulation of the low field electron mobility of strained Si and SiGe active layers on Si and SiGe substrates is considered. The Ge mole fractions of both the active layer and the substrate are varied in a wide range. The linear deformation potential theory is used to calculate the shifts of the conduction band minima due to uniaxial strain along [001]. The energy shifts and the effective masses are assumed to be functions of the Ge mole fraction. It is shown that in spite of the fact that the L-valleys remain degenerate under strain conditions considered here, they play an important role at very high Ge compositions especially when SiGe as substrate is used. We found that in this case the repopulation effects of the X-valleys affect electron mobility much stronger than the alloy scattering. We also generalize the ionized impurity scattering rate to include strain effects for doped materials and show that some of the important parameters such as effective density of states, inverse screening length, and the screening function are split due to strain and must be properly modified. Finally, we perform several simulations for undoped and doped materials using Si and SiGe substrates.
ER -