This paper presents a novel architecture to solve two problems of existing FPGAs : the large delay and area due to complex programmable switch blocks, and the large area due to coarse-grain logic blocks that are underutilized to a great degree. A mesh-connected cellular array based on a bit-serial pipeline architecture is introduced to minimize complexity of switch blocks. A fine-grain logic block architecture with a functionality of a bit-serial adder is presented to minimize the number of inputs and outputs of the logic block since increase in the number of inputs and outputs directly increases the complexity of a switch block. For an area-efficient design, the logic block is implemented based on a hybrid of a programmable logic gate and a dedicated carry logic. The hybrid architecture allows us to use a small lookup table to implement the logic gate. Moreover, the carry logic uses a functional pass-gate that merges both logic and storage functions compactly. The performance of the fine-grain field-programmable VLSI (FPVLSI) is evaluated to be more than 2 times higher than that of a coarse-grain FPVLSI.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Masanori HARIYAMA, Weisheng CHONG, Michitaka KAMEYAMA, "Field-Programmable VLSI Based on a Bit-Serial Fine-Grain Architecture" in IEICE TRANSACTIONS on Electronics,
vol. E87-C, no. 11, pp. 1897-1902, November 2004, doi: .
Abstract: This paper presents a novel architecture to solve two problems of existing FPGAs : the large delay and area due to complex programmable switch blocks, and the large area due to coarse-grain logic blocks that are underutilized to a great degree. A mesh-connected cellular array based on a bit-serial pipeline architecture is introduced to minimize complexity of switch blocks. A fine-grain logic block architecture with a functionality of a bit-serial adder is presented to minimize the number of inputs and outputs of the logic block since increase in the number of inputs and outputs directly increases the complexity of a switch block. For an area-efficient design, the logic block is implemented based on a hybrid of a programmable logic gate and a dedicated carry logic. The hybrid architecture allows us to use a small lookup table to implement the logic gate. Moreover, the carry logic uses a functional pass-gate that merges both logic and storage functions compactly. The performance of the fine-grain field-programmable VLSI (FPVLSI) is evaluated to be more than 2 times higher than that of a coarse-grain FPVLSI.
URL: https://globals.ieice.org/en_transactions/electronics/10.1587/e87-c_11_1897/_p
Copy
@ARTICLE{e87-c_11_1897,
author={Masanori HARIYAMA, Weisheng CHONG, Michitaka KAMEYAMA, },
journal={IEICE TRANSACTIONS on Electronics},
title={Field-Programmable VLSI Based on a Bit-Serial Fine-Grain Architecture},
year={2004},
volume={E87-C},
number={11},
pages={1897-1902},
abstract={This paper presents a novel architecture to solve two problems of existing FPGAs : the large delay and area due to complex programmable switch blocks, and the large area due to coarse-grain logic blocks that are underutilized to a great degree. A mesh-connected cellular array based on a bit-serial pipeline architecture is introduced to minimize complexity of switch blocks. A fine-grain logic block architecture with a functionality of a bit-serial adder is presented to minimize the number of inputs and outputs of the logic block since increase in the number of inputs and outputs directly increases the complexity of a switch block. For an area-efficient design, the logic block is implemented based on a hybrid of a programmable logic gate and a dedicated carry logic. The hybrid architecture allows us to use a small lookup table to implement the logic gate. Moreover, the carry logic uses a functional pass-gate that merges both logic and storage functions compactly. The performance of the fine-grain field-programmable VLSI (FPVLSI) is evaluated to be more than 2 times higher than that of a coarse-grain FPVLSI.},
keywords={},
doi={},
ISSN={},
month={November},}
Copy
TY - JOUR
TI - Field-Programmable VLSI Based on a Bit-Serial Fine-Grain Architecture
T2 - IEICE TRANSACTIONS on Electronics
SP - 1897
EP - 1902
AU - Masanori HARIYAMA
AU - Weisheng CHONG
AU - Michitaka KAMEYAMA
PY - 2004
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E87-C
IS - 11
JA - IEICE TRANSACTIONS on Electronics
Y1 - November 2004
AB - This paper presents a novel architecture to solve two problems of existing FPGAs : the large delay and area due to complex programmable switch blocks, and the large area due to coarse-grain logic blocks that are underutilized to a great degree. A mesh-connected cellular array based on a bit-serial pipeline architecture is introduced to minimize complexity of switch blocks. A fine-grain logic block architecture with a functionality of a bit-serial adder is presented to minimize the number of inputs and outputs of the logic block since increase in the number of inputs and outputs directly increases the complexity of a switch block. For an area-efficient design, the logic block is implemented based on a hybrid of a programmable logic gate and a dedicated carry logic. The hybrid architecture allows us to use a small lookup table to implement the logic gate. Moreover, the carry logic uses a functional pass-gate that merges both logic and storage functions compactly. The performance of the fine-grain field-programmable VLSI (FPVLSI) is evaluated to be more than 2 times higher than that of a coarse-grain FPVLSI.
ER -