This paper introduces a new type of microwave isolator. The operation is based on the two phenomena; the ferrite edge-mode and the photo-generated plasma on silicon substrate. Conventional ferrite edge-mode isolator has been made of the ferrite and the resistive material. The later is used to absorb the reverse-propagating wave of the isolator. An inadequate choice of the resistive body leads to the imperfect absorption; the isolation ratio decreases. In this paper, the isolation-variable isolator is introduced by using this change of isolation. The control is realized by the change of the surface resistance on the silicon. On this isolator, the frequency response is investigated both experimentally and numerically. The numerical analysis is conducted by FDTD method. The experiment is carried out on the prototype isolator. Both experimental and numerical results have shown that the isolation ratio can be controlled for 39 dB at 12 GHz by the irradiation.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Toshiro KODERA, "Optical Control on Ferrite Edge-Mode Isolator with Semiconductor" in IEICE TRANSACTIONS on Electronics,
vol. E87-C, no. 9, pp. 1503-1509, September 2004, doi: .
Abstract: This paper introduces a new type of microwave isolator. The operation is based on the two phenomena; the ferrite edge-mode and the photo-generated plasma on silicon substrate. Conventional ferrite edge-mode isolator has been made of the ferrite and the resistive material. The later is used to absorb the reverse-propagating wave of the isolator. An inadequate choice of the resistive body leads to the imperfect absorption; the isolation ratio decreases. In this paper, the isolation-variable isolator is introduced by using this change of isolation. The control is realized by the change of the surface resistance on the silicon. On this isolator, the frequency response is investigated both experimentally and numerically. The numerical analysis is conducted by FDTD method. The experiment is carried out on the prototype isolator. Both experimental and numerical results have shown that the isolation ratio can be controlled for 39 dB at 12 GHz by the irradiation.
URL: https://globals.ieice.org/en_transactions/electronics/10.1587/e87-c_9_1503/_p
Copy
@ARTICLE{e87-c_9_1503,
author={Toshiro KODERA, },
journal={IEICE TRANSACTIONS on Electronics},
title={Optical Control on Ferrite Edge-Mode Isolator with Semiconductor},
year={2004},
volume={E87-C},
number={9},
pages={1503-1509},
abstract={This paper introduces a new type of microwave isolator. The operation is based on the two phenomena; the ferrite edge-mode and the photo-generated plasma on silicon substrate. Conventional ferrite edge-mode isolator has been made of the ferrite and the resistive material. The later is used to absorb the reverse-propagating wave of the isolator. An inadequate choice of the resistive body leads to the imperfect absorption; the isolation ratio decreases. In this paper, the isolation-variable isolator is introduced by using this change of isolation. The control is realized by the change of the surface resistance on the silicon. On this isolator, the frequency response is investigated both experimentally and numerically. The numerical analysis is conducted by FDTD method. The experiment is carried out on the prototype isolator. Both experimental and numerical results have shown that the isolation ratio can be controlled for 39 dB at 12 GHz by the irradiation.},
keywords={},
doi={},
ISSN={},
month={September},}
Copy
TY - JOUR
TI - Optical Control on Ferrite Edge-Mode Isolator with Semiconductor
T2 - IEICE TRANSACTIONS on Electronics
SP - 1503
EP - 1509
AU - Toshiro KODERA
PY - 2004
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E87-C
IS - 9
JA - IEICE TRANSACTIONS on Electronics
Y1 - September 2004
AB - This paper introduces a new type of microwave isolator. The operation is based on the two phenomena; the ferrite edge-mode and the photo-generated plasma on silicon substrate. Conventional ferrite edge-mode isolator has been made of the ferrite and the resistive material. The later is used to absorb the reverse-propagating wave of the isolator. An inadequate choice of the resistive body leads to the imperfect absorption; the isolation ratio decreases. In this paper, the isolation-variable isolator is introduced by using this change of isolation. The control is realized by the change of the surface resistance on the silicon. On this isolator, the frequency response is investigated both experimentally and numerically. The numerical analysis is conducted by FDTD method. The experiment is carried out on the prototype isolator. Both experimental and numerical results have shown that the isolation ratio can be controlled for 39 dB at 12 GHz by the irradiation.
ER -