First we introduce the high-frequency equivalent circuit model of the Fine Pitched Ball Grid Array (FPBGA) bonding for frequencies up to 20 GHz. The lumped circuit model of the FPBGA bonding was extracted based on S-parameters measurement and subsequent fitting of the model parameters. The test packages, which contain probing pads, coplanar waveguides and FPBGA ball bonding, were fabricated and measured. The suggested π-model of the FPBGA bonding consists of self-inductor, self-capacitor, and self-resistor components. From the extracted model, a solder ball of 350 µm diameter and 800 µm ball pitch has less than 0.08 nH self-inductance, 0.40 pF self capacitance, and about 10 mΩ self-resistance. In addition, the mutual capacitance caused by the presence of the adjacent bonding balls is included in the model. The FPBGA solder ball bonding has less than 1.5 dB insertion loss up to 20 GHz, and it causes negligible delay time in digital signal transmission. The extracted circuit model of FPBGA bonding is useful in design and performance simulation of advanced packages, which use FPBGA bonding.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Junho LEE, Seungyoung AHN, Woon-Seong KWON, Kyung-Wook PAIK, Joungho KIM, "Microwave Frequency Model of FPBGA Solder Ball Extracted from S-Parameters Measurement" in IEICE TRANSACTIONS on Electronics,
vol. E87-C, no. 9, pp. 1621-1627, September 2004, doi: .
Abstract: First we introduce the high-frequency equivalent circuit model of the Fine Pitched Ball Grid Array (FPBGA) bonding for frequencies up to 20 GHz. The lumped circuit model of the FPBGA bonding was extracted based on S-parameters measurement and subsequent fitting of the model parameters. The test packages, which contain probing pads, coplanar waveguides and FPBGA ball bonding, were fabricated and measured. The suggested π-model of the FPBGA bonding consists of self-inductor, self-capacitor, and self-resistor components. From the extracted model, a solder ball of 350 µm diameter and 800 µm ball pitch has less than 0.08 nH self-inductance, 0.40 pF self capacitance, and about 10 mΩ self-resistance. In addition, the mutual capacitance caused by the presence of the adjacent bonding balls is included in the model. The FPBGA solder ball bonding has less than 1.5 dB insertion loss up to 20 GHz, and it causes negligible delay time in digital signal transmission. The extracted circuit model of FPBGA bonding is useful in design and performance simulation of advanced packages, which use FPBGA bonding.
URL: https://globals.ieice.org/en_transactions/electronics/10.1587/e87-c_9_1621/_p
Copy
@ARTICLE{e87-c_9_1621,
author={Junho LEE, Seungyoung AHN, Woon-Seong KWON, Kyung-Wook PAIK, Joungho KIM, },
journal={IEICE TRANSACTIONS on Electronics},
title={Microwave Frequency Model of FPBGA Solder Ball Extracted from S-Parameters Measurement},
year={2004},
volume={E87-C},
number={9},
pages={1621-1627},
abstract={First we introduce the high-frequency equivalent circuit model of the Fine Pitched Ball Grid Array (FPBGA) bonding for frequencies up to 20 GHz. The lumped circuit model of the FPBGA bonding was extracted based on S-parameters measurement and subsequent fitting of the model parameters. The test packages, which contain probing pads, coplanar waveguides and FPBGA ball bonding, were fabricated and measured. The suggested π-model of the FPBGA bonding consists of self-inductor, self-capacitor, and self-resistor components. From the extracted model, a solder ball of 350 µm diameter and 800 µm ball pitch has less than 0.08 nH self-inductance, 0.40 pF self capacitance, and about 10 mΩ self-resistance. In addition, the mutual capacitance caused by the presence of the adjacent bonding balls is included in the model. The FPBGA solder ball bonding has less than 1.5 dB insertion loss up to 20 GHz, and it causes negligible delay time in digital signal transmission. The extracted circuit model of FPBGA bonding is useful in design and performance simulation of advanced packages, which use FPBGA bonding.},
keywords={},
doi={},
ISSN={},
month={September},}
Copy
TY - JOUR
TI - Microwave Frequency Model of FPBGA Solder Ball Extracted from S-Parameters Measurement
T2 - IEICE TRANSACTIONS on Electronics
SP - 1621
EP - 1627
AU - Junho LEE
AU - Seungyoung AHN
AU - Woon-Seong KWON
AU - Kyung-Wook PAIK
AU - Joungho KIM
PY - 2004
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E87-C
IS - 9
JA - IEICE TRANSACTIONS on Electronics
Y1 - September 2004
AB - First we introduce the high-frequency equivalent circuit model of the Fine Pitched Ball Grid Array (FPBGA) bonding for frequencies up to 20 GHz. The lumped circuit model of the FPBGA bonding was extracted based on S-parameters measurement and subsequent fitting of the model parameters. The test packages, which contain probing pads, coplanar waveguides and FPBGA ball bonding, were fabricated and measured. The suggested π-model of the FPBGA bonding consists of self-inductor, self-capacitor, and self-resistor components. From the extracted model, a solder ball of 350 µm diameter and 800 µm ball pitch has less than 0.08 nH self-inductance, 0.40 pF self capacitance, and about 10 mΩ self-resistance. In addition, the mutual capacitance caused by the presence of the adjacent bonding balls is included in the model. The FPBGA solder ball bonding has less than 1.5 dB insertion loss up to 20 GHz, and it causes negligible delay time in digital signal transmission. The extracted circuit model of FPBGA bonding is useful in design and performance simulation of advanced packages, which use FPBGA bonding.
ER -