Low drop-out regulators (LDOs) are widely used in the system-on-a-chip (SoC) design. Due to the multi-function and energy saving requirements for mobile applications nowadays, more strict specifications are expected on the developmental roadmap of the LDOs. An output-capacitorless LDO providing fast transient response under the low supply voltage and low quiescent current conditions is proposed in this paper. Provided by the low supply voltage, the proposed LDO adopts cascading technique using the Multipath Nested Miller Compensation (MNMC) to maintain a higher bandwidth for fast transient requirement. In addition, a Transient Quiescent Current Booster (TQCB) is supplemented to the operational amplifier to improve the slew rate for the fast load transient. The TQCB only raises the quiescent current during the load transient instant so that both power saving and the load response improvement could be well achieved. It deserves noting that the proposed TQCB contains only two transistors, which is simple to be implemented compared to the other transient current enhancement techniques. The designed LDO has only 1.6 pF capacitance for the totally added on-chip compensation, and 25.8 µA of current consumption in the main amplifier. The recovery time under the fast load change is less than 3 µs and the stability is guaranteed. Test results from the real implementation of a 0.35 µm CMOS process verify that the designed LDO performs as expected.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Chun-Hsun WU, Le-Ren CHANG-CHIEN, "Transient Response Enhancement on the Output-Capacitorless Low-Dropout Regulator Using the Multipath Nested Miller Compensation with a Transient Quiescent Current Booster" in IEICE TRANSACTIONS on Electronics,
vol. E94-C, no. 9, pp. 1464-1471, September 2011, doi: 10.1587/transele.E94.C.1464.
Abstract: Low drop-out regulators (LDOs) are widely used in the system-on-a-chip (SoC) design. Due to the multi-function and energy saving requirements for mobile applications nowadays, more strict specifications are expected on the developmental roadmap of the LDOs. An output-capacitorless LDO providing fast transient response under the low supply voltage and low quiescent current conditions is proposed in this paper. Provided by the low supply voltage, the proposed LDO adopts cascading technique using the Multipath Nested Miller Compensation (MNMC) to maintain a higher bandwidth for fast transient requirement. In addition, a Transient Quiescent Current Booster (TQCB) is supplemented to the operational amplifier to improve the slew rate for the fast load transient. The TQCB only raises the quiescent current during the load transient instant so that both power saving and the load response improvement could be well achieved. It deserves noting that the proposed TQCB contains only two transistors, which is simple to be implemented compared to the other transient current enhancement techniques. The designed LDO has only 1.6 pF capacitance for the totally added on-chip compensation, and 25.8 µA of current consumption in the main amplifier. The recovery time under the fast load change is less than 3 µs and the stability is guaranteed. Test results from the real implementation of a 0.35 µm CMOS process verify that the designed LDO performs as expected.
URL: https://globals.ieice.org/en_transactions/electronics/10.1587/transele.E94.C.1464/_p
Copy
@ARTICLE{e94-c_9_1464,
author={Chun-Hsun WU, Le-Ren CHANG-CHIEN, },
journal={IEICE TRANSACTIONS on Electronics},
title={Transient Response Enhancement on the Output-Capacitorless Low-Dropout Regulator Using the Multipath Nested Miller Compensation with a Transient Quiescent Current Booster},
year={2011},
volume={E94-C},
number={9},
pages={1464-1471},
abstract={Low drop-out regulators (LDOs) are widely used in the system-on-a-chip (SoC) design. Due to the multi-function and energy saving requirements for mobile applications nowadays, more strict specifications are expected on the developmental roadmap of the LDOs. An output-capacitorless LDO providing fast transient response under the low supply voltage and low quiescent current conditions is proposed in this paper. Provided by the low supply voltage, the proposed LDO adopts cascading technique using the Multipath Nested Miller Compensation (MNMC) to maintain a higher bandwidth for fast transient requirement. In addition, a Transient Quiescent Current Booster (TQCB) is supplemented to the operational amplifier to improve the slew rate for the fast load transient. The TQCB only raises the quiescent current during the load transient instant so that both power saving and the load response improvement could be well achieved. It deserves noting that the proposed TQCB contains only two transistors, which is simple to be implemented compared to the other transient current enhancement techniques. The designed LDO has only 1.6 pF capacitance for the totally added on-chip compensation, and 25.8 µA of current consumption in the main amplifier. The recovery time under the fast load change is less than 3 µs and the stability is guaranteed. Test results from the real implementation of a 0.35 µm CMOS process verify that the designed LDO performs as expected.},
keywords={},
doi={10.1587/transele.E94.C.1464},
ISSN={1745-1353},
month={September},}
Copy
TY - JOUR
TI - Transient Response Enhancement on the Output-Capacitorless Low-Dropout Regulator Using the Multipath Nested Miller Compensation with a Transient Quiescent Current Booster
T2 - IEICE TRANSACTIONS on Electronics
SP - 1464
EP - 1471
AU - Chun-Hsun WU
AU - Le-Ren CHANG-CHIEN
PY - 2011
DO - 10.1587/transele.E94.C.1464
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E94-C
IS - 9
JA - IEICE TRANSACTIONS on Electronics
Y1 - September 2011
AB - Low drop-out regulators (LDOs) are widely used in the system-on-a-chip (SoC) design. Due to the multi-function and energy saving requirements for mobile applications nowadays, more strict specifications are expected on the developmental roadmap of the LDOs. An output-capacitorless LDO providing fast transient response under the low supply voltage and low quiescent current conditions is proposed in this paper. Provided by the low supply voltage, the proposed LDO adopts cascading technique using the Multipath Nested Miller Compensation (MNMC) to maintain a higher bandwidth for fast transient requirement. In addition, a Transient Quiescent Current Booster (TQCB) is supplemented to the operational amplifier to improve the slew rate for the fast load transient. The TQCB only raises the quiescent current during the load transient instant so that both power saving and the load response improvement could be well achieved. It deserves noting that the proposed TQCB contains only two transistors, which is simple to be implemented compared to the other transient current enhancement techniques. The designed LDO has only 1.6 pF capacitance for the totally added on-chip compensation, and 25.8 µA of current consumption in the main amplifier. The recovery time under the fast load change is less than 3 µs and the stability is guaranteed. Test results from the real implementation of a 0.35 µm CMOS process verify that the designed LDO performs as expected.
ER -