In this paper, a dual-band bandpass filter (BPF) of multilayer suspended stripline (SSL) structure and an SSL diplexer composed of a low-pass filter (LPF) and a high-pass filter (HPF) are proposed. Bandstop structure creating transmission zeros is adopted in the BPF and diplexer, enhancing the signal selectivity of the former and increasing the isolation between the diverting ports of the latter. The dual-band BPF possesses two distinct bandpass structures and a bandstop circuit, all laid on different metallic layers. The metallic layers together with the supporting substrates are vertically stacked up to save the circuit dimension. The LPF and HPF used in the diplexer structure are designed by a quasi-lumped approach, which the LC lumped-elements circuit models are developed to analyze filters' characteristics and to emulate their frequency responses. Half-wavelength resonating slots are employed in the diplexer's structure to increase the isolation between its two signal diverting ports. Experiments are conducted to verify the multilayer dual-band BPF and the diplexer design. Agreements are observed between the simulation and the measurement.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Min-Hua HO, Wei-Hong HSU, "Design of Multilayer Dual-Band BPF and Diplexer with Zeros Implantation Using Suspended Stripline" in IEICE TRANSACTIONS on Electronics,
vol. E95-C, no. 7, pp. 1195-1202, July 2012, doi: 10.1587/transele.E95.C.1195.
Abstract: In this paper, a dual-band bandpass filter (BPF) of multilayer suspended stripline (SSL) structure and an SSL diplexer composed of a low-pass filter (LPF) and a high-pass filter (HPF) are proposed. Bandstop structure creating transmission zeros is adopted in the BPF and diplexer, enhancing the signal selectivity of the former and increasing the isolation between the diverting ports of the latter. The dual-band BPF possesses two distinct bandpass structures and a bandstop circuit, all laid on different metallic layers. The metallic layers together with the supporting substrates are vertically stacked up to save the circuit dimension. The LPF and HPF used in the diplexer structure are designed by a quasi-lumped approach, which the LC lumped-elements circuit models are developed to analyze filters' characteristics and to emulate their frequency responses. Half-wavelength resonating slots are employed in the diplexer's structure to increase the isolation between its two signal diverting ports. Experiments are conducted to verify the multilayer dual-band BPF and the diplexer design. Agreements are observed between the simulation and the measurement.
URL: https://globals.ieice.org/en_transactions/electronics/10.1587/transele.E95.C.1195/_p
Copy
@ARTICLE{e95-c_7_1195,
author={Min-Hua HO, Wei-Hong HSU, },
journal={IEICE TRANSACTIONS on Electronics},
title={Design of Multilayer Dual-Band BPF and Diplexer with Zeros Implantation Using Suspended Stripline},
year={2012},
volume={E95-C},
number={7},
pages={1195-1202},
abstract={In this paper, a dual-band bandpass filter (BPF) of multilayer suspended stripline (SSL) structure and an SSL diplexer composed of a low-pass filter (LPF) and a high-pass filter (HPF) are proposed. Bandstop structure creating transmission zeros is adopted in the BPF and diplexer, enhancing the signal selectivity of the former and increasing the isolation between the diverting ports of the latter. The dual-band BPF possesses two distinct bandpass structures and a bandstop circuit, all laid on different metallic layers. The metallic layers together with the supporting substrates are vertically stacked up to save the circuit dimension. The LPF and HPF used in the diplexer structure are designed by a quasi-lumped approach, which the LC lumped-elements circuit models are developed to analyze filters' characteristics and to emulate their frequency responses. Half-wavelength resonating slots are employed in the diplexer's structure to increase the isolation between its two signal diverting ports. Experiments are conducted to verify the multilayer dual-band BPF and the diplexer design. Agreements are observed between the simulation and the measurement.},
keywords={},
doi={10.1587/transele.E95.C.1195},
ISSN={1745-1353},
month={July},}
Copy
TY - JOUR
TI - Design of Multilayer Dual-Band BPF and Diplexer with Zeros Implantation Using Suspended Stripline
T2 - IEICE TRANSACTIONS on Electronics
SP - 1195
EP - 1202
AU - Min-Hua HO
AU - Wei-Hong HSU
PY - 2012
DO - 10.1587/transele.E95.C.1195
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E95-C
IS - 7
JA - IEICE TRANSACTIONS on Electronics
Y1 - July 2012
AB - In this paper, a dual-band bandpass filter (BPF) of multilayer suspended stripline (SSL) structure and an SSL diplexer composed of a low-pass filter (LPF) and a high-pass filter (HPF) are proposed. Bandstop structure creating transmission zeros is adopted in the BPF and diplexer, enhancing the signal selectivity of the former and increasing the isolation between the diverting ports of the latter. The dual-band BPF possesses two distinct bandpass structures and a bandstop circuit, all laid on different metallic layers. The metallic layers together with the supporting substrates are vertically stacked up to save the circuit dimension. The LPF and HPF used in the diplexer structure are designed by a quasi-lumped approach, which the LC lumped-elements circuit models are developed to analyze filters' characteristics and to emulate their frequency responses. Half-wavelength resonating slots are employed in the diplexer's structure to increase the isolation between its two signal diverting ports. Experiments are conducted to verify the multilayer dual-band BPF and the diplexer design. Agreements are observed between the simulation and the measurement.
ER -