To implement a wideband bandpass filter with improved skirt-selectivity and out-band characteristics, a new parallel-coupled three-line unit with two short-circuited stubs symmetrically-loaded at the center line is proposed. Unlike most traditional ones, the passband of the proposed parallel-coupled three-line structure is based on the cross-coupling between non-adjacent lines rather than the direct-coupling between adjacent ones, whereas a pair of attenuation poles is found in the stopbands. After revealing its work mechanism, an efficient filter-design-scheme is correspondingly proposed for the presented structure. Firstly, based on a chebyshev-filter synthesis theory, a wideband passband filter consisting of a parallel-coupled two-line and two short-circuited stubs loaded at the input- and output- ports is designed. Furthermore, by putting a properly-designed 3/4-wavelength stepped-impedance resonator (SIR) in between the parallel-coupled two lines, two attenuation poles are then realized at the frequencies very close to the cutoff ones. Accordingly, the roll-off characteristics of the filter are significantly-improved to greater than 100 dB/GHz. Furthermore, two-section open-ended stubs are used to replace the short-circuited ones to realize a pair of extra attenuation poles in stopbands. To validate the proposed techniques, a wideband filter with a bandwidth of 3-5 GHz (Fractional bandwidth (FBW) = (5 GHz-3 GHz)/4 GHz =50%) was designed, simulated, fabricated and measured. The measured responses of the filter agree well with the simulation and theoretical ones, which validates the effectiveness of the newly-proposed three-line unit and the corresponding design scheme.
Chun-Ping CHEN
Kanagawa University
Junya ODA
Kanagawa University
Tetsuo ANADA
Kanagawa University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Chun-Ping CHEN, Junya ODA, Tetsuo ANADA, "Design of A Wideband Filter With Attenuation Poles Using A Novel Parallel-Coupled Three-line Unit Based on Cross-Coupling" in IEICE TRANSACTIONS on Electronics,
vol. E97-C, no. 7, pp. 689-696, July 2014, doi: 10.1587/transele.E97.C.689.
Abstract: To implement a wideband bandpass filter with improved skirt-selectivity and out-band characteristics, a new parallel-coupled three-line unit with two short-circuited stubs symmetrically-loaded at the center line is proposed. Unlike most traditional ones, the passband of the proposed parallel-coupled three-line structure is based on the cross-coupling between non-adjacent lines rather than the direct-coupling between adjacent ones, whereas a pair of attenuation poles is found in the stopbands. After revealing its work mechanism, an efficient filter-design-scheme is correspondingly proposed for the presented structure. Firstly, based on a chebyshev-filter synthesis theory, a wideband passband filter consisting of a parallel-coupled two-line and two short-circuited stubs loaded at the input- and output- ports is designed. Furthermore, by putting a properly-designed 3/4-wavelength stepped-impedance resonator (SIR) in between the parallel-coupled two lines, two attenuation poles are then realized at the frequencies very close to the cutoff ones. Accordingly, the roll-off characteristics of the filter are significantly-improved to greater than 100 dB/GHz. Furthermore, two-section open-ended stubs are used to replace the short-circuited ones to realize a pair of extra attenuation poles in stopbands. To validate the proposed techniques, a wideband filter with a bandwidth of 3-5 GHz (Fractional bandwidth (FBW) = (5 GHz-3 GHz)/4 GHz =50%) was designed, simulated, fabricated and measured. The measured responses of the filter agree well with the simulation and theoretical ones, which validates the effectiveness of the newly-proposed three-line unit and the corresponding design scheme.
URL: https://globals.ieice.org/en_transactions/electronics/10.1587/transele.E97.C.689/_p
Copy
@ARTICLE{e97-c_7_689,
author={Chun-Ping CHEN, Junya ODA, Tetsuo ANADA, },
journal={IEICE TRANSACTIONS on Electronics},
title={Design of A Wideband Filter With Attenuation Poles Using A Novel Parallel-Coupled Three-line Unit Based on Cross-Coupling},
year={2014},
volume={E97-C},
number={7},
pages={689-696},
abstract={To implement a wideband bandpass filter with improved skirt-selectivity and out-band characteristics, a new parallel-coupled three-line unit with two short-circuited stubs symmetrically-loaded at the center line is proposed. Unlike most traditional ones, the passband of the proposed parallel-coupled three-line structure is based on the cross-coupling between non-adjacent lines rather than the direct-coupling between adjacent ones, whereas a pair of attenuation poles is found in the stopbands. After revealing its work mechanism, an efficient filter-design-scheme is correspondingly proposed for the presented structure. Firstly, based on a chebyshev-filter synthesis theory, a wideband passband filter consisting of a parallel-coupled two-line and two short-circuited stubs loaded at the input- and output- ports is designed. Furthermore, by putting a properly-designed 3/4-wavelength stepped-impedance resonator (SIR) in between the parallel-coupled two lines, two attenuation poles are then realized at the frequencies very close to the cutoff ones. Accordingly, the roll-off characteristics of the filter are significantly-improved to greater than 100 dB/GHz. Furthermore, two-section open-ended stubs are used to replace the short-circuited ones to realize a pair of extra attenuation poles in stopbands. To validate the proposed techniques, a wideband filter with a bandwidth of 3-5 GHz (Fractional bandwidth (FBW) = (5 GHz-3 GHz)/4 GHz =50%) was designed, simulated, fabricated and measured. The measured responses of the filter agree well with the simulation and theoretical ones, which validates the effectiveness of the newly-proposed three-line unit and the corresponding design scheme.},
keywords={},
doi={10.1587/transele.E97.C.689},
ISSN={1745-1353},
month={July},}
Copy
TY - JOUR
TI - Design of A Wideband Filter With Attenuation Poles Using A Novel Parallel-Coupled Three-line Unit Based on Cross-Coupling
T2 - IEICE TRANSACTIONS on Electronics
SP - 689
EP - 696
AU - Chun-Ping CHEN
AU - Junya ODA
AU - Tetsuo ANADA
PY - 2014
DO - 10.1587/transele.E97.C.689
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E97-C
IS - 7
JA - IEICE TRANSACTIONS on Electronics
Y1 - July 2014
AB - To implement a wideband bandpass filter with improved skirt-selectivity and out-band characteristics, a new parallel-coupled three-line unit with two short-circuited stubs symmetrically-loaded at the center line is proposed. Unlike most traditional ones, the passband of the proposed parallel-coupled three-line structure is based on the cross-coupling between non-adjacent lines rather than the direct-coupling between adjacent ones, whereas a pair of attenuation poles is found in the stopbands. After revealing its work mechanism, an efficient filter-design-scheme is correspondingly proposed for the presented structure. Firstly, based on a chebyshev-filter synthesis theory, a wideband passband filter consisting of a parallel-coupled two-line and two short-circuited stubs loaded at the input- and output- ports is designed. Furthermore, by putting a properly-designed 3/4-wavelength stepped-impedance resonator (SIR) in between the parallel-coupled two lines, two attenuation poles are then realized at the frequencies very close to the cutoff ones. Accordingly, the roll-off characteristics of the filter are significantly-improved to greater than 100 dB/GHz. Furthermore, two-section open-ended stubs are used to replace the short-circuited ones to realize a pair of extra attenuation poles in stopbands. To validate the proposed techniques, a wideband filter with a bandwidth of 3-5 GHz (Fractional bandwidth (FBW) = (5 GHz-3 GHz)/4 GHz =50%) was designed, simulated, fabricated and measured. The measured responses of the filter agree well with the simulation and theoretical ones, which validates the effectiveness of the newly-proposed three-line unit and the corresponding design scheme.
ER -