IEICE TRANSACTIONS on Electronics

  • Impact Factor

    0.63

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.3

Advance publication (published online immediately after acceptance)

Volume E89-C No.9  (Publication Date:2006/09/01)

    Special Section on Metamaterials for Microwave and Millimeter-Wave Applications
  • FOREWORD

    Ikuo AWAI  

     
    FOREWORD

      Page(s):
    1265-1266
  • Metamaterial-Based Antennas: Research and Developments

    Richard W. ZIOLKOWSKI  

     
    INVITED PAPER

      Page(s):
    1267-1275

    A brief review of metamaterials and their applications to antenna systems is given. Artificial magnetic conductors and electrically small radiating and scattering systems are emphasized. Single negative, double negative, and zero-index metamaterial systems are discussed as a means to manipulate their size, efficiency, bandwidth, and directivity characteristics.

  • Novel Two-Dimensional Planar Negative Refractive Index Structure

    Naoko MATSUNAGA  Atsushi SANADA  Hiroshi KUBO  

     
    PAPER

      Page(s):
    1276-1282

    A novel purely distributed two-dimensional (2D) planar structure with a negative refractive index (NRI) is proposed. The structure consists of a 2D periodic array of unit cells with metal patterns on the both sides of a substrate. The unit cell with the dimension of 55 mm2 is designed at an operation frequency of about 5 GHz by full-wave finite element method simulations. Numerical simulations on the dispersion characteristics are carried out and NRI property of the structure is confirmed. A equivalent circuit taking into account the mutual capacitance between the adjacent ports in the unit cell is introduced, and theoretical investigations based on the equivalent circuit reveals that the anisotropy can be controlled by the mutual capacitance. A 1020 unit-cell NRI material is fabricated and the NRI property has been confirmed experimentally in excellent agreement with Snell's law.

  • Modal Analysis of Finite-Thickness Slab with Single-Negative Tensor Material Parameters

    Masashi HOTTA  Mitsuo HANO  Ikuo AWAI  

     
    PAPER

      Page(s):
    1283-1290

    Eigenvalue equations and expressions of EM fields for volume modes in an anisotropic single-negative slab with tensor material parameters is presented. By the comparison with the eigenvalue equation of surface modes along single-negative slab with negative scalar permeability, the validity of the present study is confirmed. We have also made clear which elements of the material parameter tensors affect existence of TE and TM modes in the slab. Taking the dispersion of material parameters into consideration, we demonstrate in detail that TE modes propagate in a slab with one negative element of the permeability tensor numerically. These TE modes turn out to be the magnetostatic waves (MSWs), which is the first demonstration of the MSW in a nonmagnetic material.

  • Two-Dimensional Analysis of Guided Modes in a Metallic Electromagnetic Crystal Waveguide

    Hongting JIA  Kiyotoshi YASUMOTO  

     
    PAPER

      Page(s):
    1291-1298

    A rigorous and simple method is proposed for analyzing guided modes of metallic electromagnetic crystal waveguides. The method is a combination of generalized reflection and transmission matrices and the mode-matching technique. Fast convergence, low computer cost, and high calculating precision are main advantages of the proposed method. This method can easily avoid the relative convergence phenomena than a classical mode-matching method, and the proposed formulation is very suitable to analyzing multilayered problems with very low computer cost. The existence of H-polarized modes in metallic electromagnetic crystal waveguides has been verified.

  • Novel Planar Composite Right/Left-Handed Transmission Line with Double-Sided Metal Patterns

    Shuji ASOU  Atsushi SANADA  Hiroshi KUBO  

     
    PAPER

      Page(s):
    1299-1305

    A novel planar composite right/left handed (CRLH) transmission line (TL) with double-sided metal patterns, which is advantageous in high scalability and low-cost fabrication, is proposed. Fundamental characteristics of the unbalanced and balanced CRLH TLs are confirmed numerically and theoretically both by full-wave finite-element method (FEM) simulations and the equivalent circuit analysis in terms of dispersion characteristics and characteristic impedances for the periodic structure. It is also shown that the relations between the left-handed circuit parameters and the geometrical parameters of the unit cell are simple and intuitive, which is useful for designing the CRLH TL. Experiments on 10-cell unbalanced and balanced CRLH TLs are carried out and the left-handed and right-handed wave propagations are confirmed by scattering parameter and near field measurements.

  • Composite Right/Left-Handed Transmission Lines Based on Conductor-Backed Coplanar Strips

    Rei GOTO  Hiroyuki DEGUCHI  Mikio TSUJI  

     
    PAPER

      Page(s):
    1306-1311

    We propose here a composite right/left handed transmission line constructed by using conductor-backed coplanar strips. In this line, we can easily realize a shunt inductor without via because it has the electric-wall symmetry at the guide center. The left-handed nature is verified by both the finite difference time-domain (FDTD) and the equivalent-circuit calculations. Furthermore, we demonstrate the proposed line can easily satisfy the balanced condition for no band gap between the right-handed and the left-handed modes, and can be applied to a leaky-wave antenna, numerically and experimentally.

  • On the Quasi-Left-Handed Transmission Line with Gyrator Loading

    Kensuke OKUBO  Makoto TSUTSUMI  

     
    PAPER

      Page(s):
    1312-1317

    This paper treats transmission characteristics of periodic structure of ferrite gyrator circuit with both theory and experiment, which is loaded into usual distributed constant line with and without lumped capacitor. Following three types of periodic structure of gyrator circuit are proposed: basic structure of periodic gyrator circuit, quasi-LH gyrator circuit with series capacitance loading, and quasi-LH gyrator circuit with parallel capacitance loading. Moreover, replacing the parallel capacitance with a resistance, a periodic structure of isolator circuit is proposed. Scattering parameters of gyrator circuit are derived with help of equivalent circuit model. Left handed transmission behavior of backward wave is discussed from dispersion curves. Experiments were undertaken using periodic structure of dielectric microstrip line and gyrator circuit fabricated on the ferrite substrate. Experimental results having wide band nonreciprocal characteristics are discussed with theory.

  • Left-Handed Transmission Characteristics of Ferrite Microstrip Lines without Series Capacitive Loading

    Tetsuya UEDA  Makoto TSUTSUMI  

     
    PAPER

      Page(s):
    1318-1323

    A nonreciprocal left-handed transmission line is proposed and investigated, which is composed of a normally magnetized ferrite microstrip line periodically loaded with inductive stubs but without capacitive loading. The circuit configuration becomes simpler than that of a nonreciprocal left-handed transmission line with both shunt inductive and series capacitive loadings. In the proposed structure, ferrite medium is employed as the substrate not only for the nonreciprocal characteristics but also for negative effective permeability that is essential to establish the left-handedness. After calculations of dispersion curves using equivalent circuit model, scattering parameters along with field patterns are estimated numerically with the help of electromagnetic simulation, and the experiments are also carried out. It is found that the band width of the proposed left-handed transmission line is relatively narrow but the structure still has the high isolation ratio of more than 30 dB.

  • Analysis of Electromagnetic Bandgap Based Filters in a Rectangular Waveguide

    Kiyotoshi YASUMOTO  Naoya KOIKE  Hongting JIA  Bhaskar GUPTA  

     
    PAPER

      Page(s):
    1324-1329

    Electromagnetic crystals formed by vertical full posts stacked in a rectangular waveguide are analyzed using the image theory and the lattice sums technique. It is shown that the frequency response of the crystals consisting of circular posts can be obtained by a simpler matrix calculus based on the one-dimensional lattice sums, the T-matrix of a circular cylinder in free space, and the generalized reflection and transmission matrices.

  • Left-Handed Material Composed of Planar Circuit-Type Resonators in a Waveguide

    Hiroshi KUBO  Tsuyoshi MUKAI  Atsushi SANADA  

     
    PAPER

      Page(s):
    1330-1336

    A compact, nonradiative, and easy fabricated left-handed material composed of planar circuit-type resonators in a cutoff waveguide is proposed. It is shown that the TE-type evanescent field is equivalent to the field in ε-negative material and the resonator works as a particle with negative permeability. The existence of a left-handed mode is ensured by a field distribution and a dispersion relation. After showing that the two constituents have an influence on the permittivity or the permeability of the material, on the basis of an idea of impedance, the material is matched to a conventional waveguide. Finally the material can be applied to a left-handed leaky-wave antenna.

  • W-Band Steerable Composite Right/Left-Handed Leaky Wave Antenna for Automotive Applications

    Shin-ichiro MATSUZAWA  Kazuo SATO  Yoshinori INOUE  Tsuyoshi NOMURA  

     
    PAPER

      Page(s):
    1337-1344

    A novel structure for a frequency-independent steerable composite right/left-handed (CRLH) leaky wave (LW) antenna in the millimeter-wave band is proposed. This has the advantages of wide beam scanning and low profile, and is a suitable structure for mass-production. The proposed antenna has features wherein a movable dielectric slab is placed above the CRLH LW antenna, and the radiation angle can be steered by changing the distance between the slab and the antenna using compact actuators. Moreover, slots are added to the antenna to control the aperture amplitude distribution of the array antenna in order to enhance aperture efficiency. A prototype CRLH LW antenna has been fabricated with these slots, and backward-to-forward beam scanning characteristics at 76 GHz have been demonstrated successfully by measurement. A wide scanning angle from 73 to 114 deg. has been achieved experimentally. The aperture efficiency is 25.3%.

  • Reduction of Mutual Coupling in a Microstrip Patch Array Fed by a Triplate Waveguide with EBG Elements

    Toru OKAGAKI  Kazuo NAKANO  Yuichi KIMURA  Misao HANEISHI  

     
    LETTER

      Page(s):
    1345-1347

    This letter presents mutual coupling reduction in an E-plane arranged microstrip patch array fed by a triplate waveguide. Five mushroom-like electromagnetic band-gap (EBG) elements arranged in one column are embedded both between two radiating patches and between the feeding lines for suppression of the surface wave and the parallel plate mode, respectively. Validity of the proposed EBG elements is confirmed by the measurement.

  • A Compact Multi-Layered Wideband Bandpass Filter Exhibiting Left-Handed and Right-Handed Behaviors

    Yasushi HORII  Akira TANAKA  Takefumi HAYASHI  Yukio IIDA  

     
    LETTER

      Page(s):
    1348-1350

    This letter proposes a compact multi-layered bandpass filter exhibiting left-handed and right-handed behaviors in its passband. This filter has a greatly expanded passband from 1.61 GHz to 4.16 GHz (88.4% bandwidth) with a maximum ripple of 1.2 dB and well-suppressed out-of-passbands with transmission zeros at 1.15 GHz and 4.52 GHz. The physical mechanisms are studied with FEM-based full-wave simulations, equivalent circuit analysis and careful experiments.

  • Regular Section
  • A Test Structure to Analyze Highly-Doped-Drain and Lightly-Doped-Drain in CMOSFET

    Takashi OHZONE  Kazuhiko OKADA  Takayuki MORISHITA  Kiyotaka KOMOKU  Toshihiro MATSUDA  Hideyuki IWATA  

     
    PAPER-Semiconductor Materials and Devices

      Page(s):
    1351-1357

    A test structure to separately measure sheet resistances of highly-doped-drain (HDD) and lightly-doped-drain (LDD) in LDD-type CMOSFETs with various gate spaces S having sub-100 nm sidewalls was proposed. From the reciprocal of source/drain-resistance R-1 versus S characteristics, the sheet resistance ρH of the high-conductive-region (HCR) corresponding to HDD and the approximate width WLC of the low-conductive-region (LCR) corresponding to LDD could be estimated. Both of ρH and WLC for p- and n-MOS devices were scarcely dependent on the gate voltage. The sidewall-width difference of 40 nm could be sufficiently detected by using the test structure with the S pitch of about 60 nm. The R-1 versus S characteristics showed the unstable resistance variations in the narrow S region less than 0.3 µm, which corresponded to the minimum S for the process used for the test device fabrication and suggested that various micro-loading effects seriously affected on the characteristics.

  • Scattering of a TM Plane Wave from a Periodic Surface with Finite Extent: Perturbation Solution

    Junichi NAKAYAMA  Yujiro OCHI  Yasuhiko TAMURA  

     
    LETTER-Electromagnetic Theory

      Page(s):
    1358-1361

    This paper studies the scattering of a TM plane wave from a perfectly conductive sinusoidal surface with finite extent by the small perturbation method. We obtain the first and second order perturbed solutions explicitly, in terms of which the differential scattering cross section and the total scattering cross section per unit surface are calculated and are illustrated in figures. By comparison with results by a numerical method, it is concluded that the perturbed solution is reasonable even for a critical angle of incidence if the surface is small in roughness and gentle in slope and if the corrugation width is less than certain value. A brief discussion is given on multiple scattering effects.

  • Diffraction Amplitudes from Periodic Neumann Surface: Low Grazing Limit of Incidence (II)

    Junichi NAKAYAMA  Kazuhiro HATTORI  Yasuhiko TAMURA  

     
    LETTER-Electromagnetic Theory

      Page(s):
    1362-1364

    The diffraction of a transverse magnetic (TM) plane wave by a perfectly conductive surface made up of a periodic array of rectangular grooves is studied by the modal expansion method. It is found theoretically that the reflection coefficient approaches -1 but no diffraction takes place when the angle of incidence reaches a low grazing limit. Such singular behavior is shown analytically to hold for any finite values of the period, groove depth and groove width and is then demonstrated by numerical examples.

  • A Compact C-CMRC Feeding Open-Loop Resonator for Harmonic Rejection Bandpass Filter

    Jianzhong GU  Xiaowei SUN  

     
    LETTER-Microwaves, Millimeter-Waves

      Page(s):
    1365-1367

    A compact open-loop resonator bandpass filter is presented to suppress the spurious passband using compensated compact microstrip resonant cell (C-CMRC) feeding structure. Based on the inherently compact and stopband characteristics of the C-CMRC feeding, the proposed filters shows a better spurious rejection performance than the only open-loop resonator filter. The suppression is -57.4 dB, -49.5 dB, and -43.9 dB at the 2nd, 3rd and 4th harmonic signal separately. All the performance of proposed filters have been verified by the measured results.

  • Fast Pulse Driving of Ferroelectric SBT Capacitors in a Nonvolatile Latch

    Shinzo KOYAMA  Yoshihisa KATO  Takayoshi YAMADA  Yasuhiro SHIMADA  

     
    LETTER-Integrated Electronics

      Page(s):
    1368-1372

    We demonstrate a fast shutdown and resumption of a logic circuit applied a nonvolatile latch having SrBi2(Ta,Nb)2O9 (SBT) capacitors without a higher drive voltage than a logic voltage of 1.8 V. By assigning an individual drive circuit of the SBT capacitors to the nonvolatile latch not sharing a drive circuit with multiple nonvolatile latches, the fast shutdown and resumption of a logic circuit were completed in 7.5 ns at a drive voltage of 1.3 V. The fast shutdown and resumption without an addition of a high drive voltage to a logic circuit meets a requirement from power-saving applications of system LSIs fabricated in CMOS technologies at 90-nm and below.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.