Akira FUJIMAKI Daiki HASEGAWA Yuto TAKESHITA Feng LI Taro YAMASHITA Masamitsu TANAKA
Yihao WANG Jianguo XI Chengwei XIE
Feng TIAN Zhongyuan ZHOU Guihua WANG Lixiang WANG
Yukihiro SUZUKI Mana SAKAMOTO Taiyou NAGASHIMA Yosuke MIZUNO Heeyoung LEE
Yo KUMANO Tetsuya IIZUKA
Wisansaya JAIKEANDEE Chutiparn LERTVACHIRAPAIBOON Dechnarong PIMALAI Kazunari SHINBO Keizo KATO Akira BABA
Satomitsu Imai Shoya Ishii Nanako Itaya
Satomitsu Imai Takekusu Muraoka Kaito Tsujioka
Takahide Mizuno Hirokazu Ikeda Hiroki Senshu Toru Nakura Kazuhiro Umetani Akihiro Konishi Akihito Ogawa Kaito Kasai Kosuke Kawahara
Yongshan Hu Rong Jin Yukai Lin Shunmin Wu Tianting Zhao Yidong Yuan
Kewen He Kazuya Kobayashi
Tong Zhang Kazuya Kobayashi
Yuxuan PAN Dongzhu LI Mototsugu HAMADA Atsutake KOSUGE
Shigeyuki Miyajima Hirotaka Terai Shigehito Miki
Xiaoshu CHENG Yiwen WANG Hongfei LOU Weiran DING Ping LI
Akito MORITA Hirotsugu OKUNO
Chunlu WANG Yutaka MASUDA Tohru ISHIHARA
Dai TAGUCHI Takaaki MANAKA Mitsumasa IWAMOTO
Kento KOBAYASHI Riku IMAEDA Masahiro MORIMOTO Shigeki NAKA
Yoshinao MIZUGAKI Kenta SATO Hiroshi SHIMADA
Baoquan ZHONG Zhiqun CHENG Minshi JIA Bingxin LI Kun WANG Zhenghao YANG Zheming ZHU
Kazuya TADA
Suguru KURATOMI Satoshi USUI Yoko TATEWAKI Hiroaki USUI
Yoshihiro NAKA Masahiko NISHIMOTO Mitsuhiro YOKOTA
Tsuneki YAMASAKI
Kengo SUGAHARA
Cuong Manh BUI Hiroshi SHIRAI
Hiroyuki DEGUCHI Masataka OHIRA Mikio TSUJI
Yongzhe Wei Zhongyuan Zhou Zhicheng Xue Shunyu Yao Haichun Wang
Mio TANIGUCHI Akito IGUCHI Yasuhide TSUJI
Kouji SHIBATA Masaki KOBAYASHI
Zhi Earn TAN Kenjiro MATSUMOTO Masaya TAKAGI Hiromasa SAEKI Masaya TAMURA
Koya TANIKAWA Shun FUJII Soma KOGURE Shuya TANAKA Shun TASAKA Koshiro WADA Satoki KAWANISHI Takasumi TANABE
A brief review of metamaterials and their applications to antenna systems is given. Artificial magnetic conductors and electrically small radiating and scattering systems are emphasized. Single negative, double negative, and zero-index metamaterial systems are discussed as a means to manipulate their size, efficiency, bandwidth, and directivity characteristics.
Naoko MATSUNAGA Atsushi SANADA Hiroshi KUBO
A novel purely distributed two-dimensional (2D) planar structure with a negative refractive index (NRI) is proposed. The structure consists of a 2D periodic array of unit cells with metal patterns on the both sides of a substrate. The unit cell with the dimension of 5
Masashi HOTTA Mitsuo HANO Ikuo AWAI
Eigenvalue equations and expressions of EM fields for volume modes in an anisotropic single-negative slab with tensor material parameters is presented. By the comparison with the eigenvalue equation of surface modes along single-negative slab with negative scalar permeability, the validity of the present study is confirmed. We have also made clear which elements of the material parameter tensors affect existence of TE and TM modes in the slab. Taking the dispersion of material parameters into consideration, we demonstrate in detail that TE modes propagate in a slab with one negative element of the permeability tensor numerically. These TE modes turn out to be the magnetostatic waves (MSWs), which is the first demonstration of the MSW in a nonmagnetic material.
Hongting JIA Kiyotoshi YASUMOTO
A rigorous and simple method is proposed for analyzing guided modes of metallic electromagnetic crystal waveguides. The method is a combination of generalized reflection and transmission matrices and the mode-matching technique. Fast convergence, low computer cost, and high calculating precision are main advantages of the proposed method. This method can easily avoid the relative convergence phenomena than a classical mode-matching method, and the proposed formulation is very suitable to analyzing multilayered problems with very low computer cost. The existence of H-polarized modes in metallic electromagnetic crystal waveguides has been verified.
Shuji ASOU Atsushi SANADA Hiroshi KUBO
A novel planar composite right/left handed (CRLH) transmission line (TL) with double-sided metal patterns, which is advantageous in high scalability and low-cost fabrication, is proposed. Fundamental characteristics of the unbalanced and balanced CRLH TLs are confirmed numerically and theoretically both by full-wave finite-element method (FEM) simulations and the equivalent circuit analysis in terms of dispersion characteristics and characteristic impedances for the periodic structure. It is also shown that the relations between the left-handed circuit parameters and the geometrical parameters of the unit cell are simple and intuitive, which is useful for designing the CRLH TL. Experiments on 10-cell unbalanced and balanced CRLH TLs are carried out and the left-handed and right-handed wave propagations are confirmed by scattering parameter and near field measurements.
Rei GOTO Hiroyuki DEGUCHI Mikio TSUJI
We propose here a composite right/left handed transmission line constructed by using conductor-backed coplanar strips. In this line, we can easily realize a shunt inductor without via because it has the electric-wall symmetry at the guide center. The left-handed nature is verified by both the finite difference time-domain (FDTD) and the equivalent-circuit calculations. Furthermore, we demonstrate the proposed line can easily satisfy the balanced condition for no band gap between the right-handed and the left-handed modes, and can be applied to a leaky-wave antenna, numerically and experimentally.
This paper treats transmission characteristics of periodic structure of ferrite gyrator circuit with both theory and experiment, which is loaded into usual distributed constant line with and without lumped capacitor. Following three types of periodic structure of gyrator circuit are proposed: basic structure of periodic gyrator circuit, quasi-LH gyrator circuit with series capacitance loading, and quasi-LH gyrator circuit with parallel capacitance loading. Moreover, replacing the parallel capacitance with a resistance, a periodic structure of isolator circuit is proposed. Scattering parameters of gyrator circuit are derived with help of equivalent circuit model. Left handed transmission behavior of backward wave is discussed from dispersion curves. Experiments were undertaken using periodic structure of dielectric microstrip line and gyrator circuit fabricated on the ferrite substrate. Experimental results having wide band nonreciprocal characteristics are discussed with theory.
A nonreciprocal left-handed transmission line is proposed and investigated, which is composed of a normally magnetized ferrite microstrip line periodically loaded with inductive stubs but without capacitive loading. The circuit configuration becomes simpler than that of a nonreciprocal left-handed transmission line with both shunt inductive and series capacitive loadings. In the proposed structure, ferrite medium is employed as the substrate not only for the nonreciprocal characteristics but also for negative effective permeability that is essential to establish the left-handedness. After calculations of dispersion curves using equivalent circuit model, scattering parameters along with field patterns are estimated numerically with the help of electromagnetic simulation, and the experiments are also carried out. It is found that the band width of the proposed left-handed transmission line is relatively narrow but the structure still has the high isolation ratio of more than 30 dB.
Kiyotoshi YASUMOTO Naoya KOIKE Hongting JIA Bhaskar GUPTA
Electromagnetic crystals formed by vertical full posts stacked in a rectangular waveguide are analyzed using the image theory and the lattice sums technique. It is shown that the frequency response of the crystals consisting of circular posts can be obtained by a simpler matrix calculus based on the one-dimensional lattice sums, the T-matrix of a circular cylinder in free space, and the generalized reflection and transmission matrices.
Hiroshi KUBO Tsuyoshi MUKAI Atsushi SANADA
A compact, nonradiative, and easy fabricated left-handed material composed of planar circuit-type resonators in a cutoff waveguide is proposed. It is shown that the TE-type evanescent field is equivalent to the field in ε-negative material and the resonator works as a particle with negative permeability. The existence of a left-handed mode is ensured by a field distribution and a dispersion relation. After showing that the two constituents have an influence on the permittivity or the permeability of the material, on the basis of an idea of impedance, the material is matched to a conventional waveguide. Finally the material can be applied to a left-handed leaky-wave antenna.
Shin-ichiro MATSUZAWA Kazuo SATO Yoshinori INOUE Tsuyoshi NOMURA
A novel structure for a frequency-independent steerable composite right/left-handed (CRLH) leaky wave (LW) antenna in the millimeter-wave band is proposed. This has the advantages of wide beam scanning and low profile, and is a suitable structure for mass-production. The proposed antenna has features wherein a movable dielectric slab is placed above the CRLH LW antenna, and the radiation angle can be steered by changing the distance between the slab and the antenna using compact actuators. Moreover, slots are added to the antenna to control the aperture amplitude distribution of the array antenna in order to enhance aperture efficiency. A prototype CRLH LW antenna has been fabricated with these slots, and backward-to-forward beam scanning characteristics at 76 GHz have been demonstrated successfully by measurement. A wide scanning angle from 73 to 114 deg. has been achieved experimentally. The aperture efficiency is 25.3%.
Toru OKAGAKI Kazuo NAKANO Yuichi KIMURA Misao HANEISHI
This letter presents mutual coupling reduction in an E-plane arranged microstrip patch array fed by a triplate waveguide. Five mushroom-like electromagnetic band-gap (EBG) elements arranged in one column are embedded both between two radiating patches and between the feeding lines for suppression of the surface wave and the parallel plate mode, respectively. Validity of the proposed EBG elements is confirmed by the measurement.
Yasushi HORII Akira TANAKA Takefumi HAYASHI Yukio IIDA
This letter proposes a compact multi-layered bandpass filter exhibiting left-handed and right-handed behaviors in its passband. This filter has a greatly expanded passband from 1.61 GHz to 4.16 GHz (88.4% bandwidth) with a maximum ripple of 1.2 dB and well-suppressed out-of-passbands with transmission zeros at 1.15 GHz and 4.52 GHz. The physical mechanisms are studied with FEM-based full-wave simulations, equivalent circuit analysis and careful experiments.
Takashi OHZONE Kazuhiko OKADA Takayuki MORISHITA Kiyotaka KOMOKU Toshihiro MATSUDA Hideyuki IWATA
A test structure to separately measure sheet resistances of highly-doped-drain (HDD) and lightly-doped-drain (LDD) in LDD-type CMOSFETs with various gate spaces S having sub-100 nm sidewalls was proposed. From the reciprocal of source/drain-resistance R-1 versus S characteristics, the sheet resistance ρH of the high-conductive-region (HCR) corresponding to HDD and the approximate width WLC of the low-conductive-region (LCR) corresponding to LDD could be estimated. Both of ρH and WLC for p- and n-MOS devices were scarcely dependent on the gate voltage. The sidewall-width difference of 40 nm could be sufficiently detected by using the test structure with the S pitch of about 60 nm. The R-1 versus S characteristics showed the unstable resistance variations in the narrow S region less than 0.3 µm, which corresponded to the minimum S for the process used for the test device fabrication and suggested that various micro-loading effects seriously affected on the characteristics.
Junichi NAKAYAMA Yujiro OCHI Yasuhiko TAMURA
This paper studies the scattering of a TM plane wave from a perfectly conductive sinusoidal surface with finite extent by the small perturbation method. We obtain the first and second order perturbed solutions explicitly, in terms of which the differential scattering cross section and the total scattering cross section per unit surface are calculated and are illustrated in figures. By comparison with results by a numerical method, it is concluded that the perturbed solution is reasonable even for a critical angle of incidence if the surface is small in roughness and gentle in slope and if the corrugation width is less than certain value. A brief discussion is given on multiple scattering effects.
Junichi NAKAYAMA Kazuhiro HATTORI Yasuhiko TAMURA
The diffraction of a transverse magnetic (TM) plane wave by a perfectly conductive surface made up of a periodic array of rectangular grooves is studied by the modal expansion method. It is found theoretically that the reflection coefficient approaches -1 but no diffraction takes place when the angle of incidence reaches a low grazing limit. Such singular behavior is shown analytically to hold for any finite values of the period, groove depth and groove width and is then demonstrated by numerical examples.
A compact open-loop resonator bandpass filter is presented to suppress the spurious passband using compensated compact microstrip resonant cell (C-CMRC) feeding structure. Based on the inherently compact and stopband characteristics of the C-CMRC feeding, the proposed filters shows a better spurious rejection performance than the only open-loop resonator filter. The suppression is -57.4 dB, -49.5 dB, and -43.9 dB at the 2nd, 3rd and 4th harmonic signal separately. All the performance of proposed filters have been verified by the measured results.
Shinzo KOYAMA Yoshihisa KATO Takayoshi YAMADA Yasuhiro SHIMADA
We demonstrate a fast shutdown and resumption of a logic circuit applied a nonvolatile latch having SrBi2(Ta,Nb)2O9 (SBT) capacitors without a higher drive voltage than a logic voltage of 1.8 V. By assigning an individual drive circuit of the SBT capacitors to the nonvolatile latch not sharing a drive circuit with multiple nonvolatile latches, the fast shutdown and resumption of a logic circuit were completed in 7.5 ns at a drive voltage of 1.3 V. The fast shutdown and resumption without an addition of a high drive voltage to a logic circuit meets a requirement from power-saving applications of system LSIs fabricated in CMOS technologies at 90-nm and below.